Corrections
- WI - overfull hbox - other stuff
This commit is contained in:
169
chap-OT-LWE.tex
169
chap-OT-LWE.tex
@ -525,7 +525,7 @@ Our basic \OTA protocol builds on the ``assisted decryption'' technique \cite{C
|
||||
using a multi-bit variant \cite{PVW08} of Regev's cryptosystem \cite{Reg05} and proves the well-formedness of its public key and all ciphertexts. In addition,
|
||||
all ciphertexts are signed using a signature scheme. At each
|
||||
transfer, the receiver statistically re-randomizes a blinded version of the desired ciphertext, where the blinding is done via the additive
|
||||
homomorphism of Regev. Then, the receiver provides a witness indistinguishable (WI) argument that the modified ciphertext (which is
|
||||
homomorphism of Regev. Then, the receiver provides a witness indistinguishable (\textsf{WI}) argument that the modified ciphertext (which is
|
||||
submitted for oblivious decryption) is
|
||||
a transformation of one of the original ciphertexts by arguing knowledge of a signature on this hidden ciphertext. In response,
|
||||
the sender obliviously decrypts the modified ciphertext and argues in zero-knowledge that the response is correct.
|
||||
@ -571,10 +571,9 @@ ${PK}_{sig}:=\big( \mathbf{A},
|
||||
Sample vectors $\mathbf{a}_1,\ldots ,\mathbf{a}_N \sample
|
||||
U(\Zq^n)$ and $\mathbf{x}_1,\ldots,\mathbf{x}_{N} \sample \chi^{t}$ to
|
||||
compute
|
||||
\begin{eqnarray} \label{init-db}
|
||||
(\mathbf{a}_i,\mathbf{b}_i)= \bigl( \mathbf{a}_i, ~ \mathbf{S}^T \cdot \mathbf{a}_i + \mathbf{x}_i + M_i \cdot \lfloor q/2 \rfloor \bigr) \in \Zq^n \times \Zq^{t} \qquad \forall i \in [N].
|
||||
\qquad
|
||||
\end{eqnarray}
|
||||
\begin{align} \label{init-db}
|
||||
(\mathbf{a}_i,\mathbf{b}_i) &= \bigl( \mathbf{a}_i, ~ \mathbf{S}^T \cdot \mathbf{a}_i + \mathbf{x}_i + M_i \cdot \lfloor q/2 \rfloor \bigr) \in \Zq^n \times \Zq^{t} & \forall i \in [N].
|
||||
\end{align}
|
||||
|
||||
\item[4.] For each $i \in [N]$, generate a signature $(\tau_i,\mathbf{v}_i ) \leftarrow \mathsf{Sign}(SK_{sig},\tau,\mathfrak{m}_i)$ on the decomposition
|
||||
$\mathfrak{m}_i=\mathsf{vdec}_{n+t,q-1}(\mathbf{a}_i^T |\mathbf{b}_i^T )^T \in \{0,1\}^{m_d}$. % of $(\mathbf{a}_i^T | \mathbf{b}_i^T)^T \in \Zq^{n+t}$.
|
||||
@ -600,7 +599,7 @@ an index $\rho_i \in [1,N]$. It interacts as follows with the sender $\mathsf{S}
|
||||
\qquad
|
||||
\end{eqnarray}
|
||||
which is a re-randomization of $(\mathbf{a}_{\rho_i},\mathbf{b}_{\rho_i} + \mu \cdot \lfloor q/2 \rfloor )$. The ciphertext $(\mathbf{c}_0,\mathbf{c}_1)$ is sent to
|
||||
$\mathsf{S}_\mathsf{T}$. In addition, $\mathsf{R}_\mathsf{T}$ provides an interactive WI argument that $(\mathbf{c}_0,\mathbf{c}_1)$ is indeed a transformation of $(\mathbf{a}_{\rho_i},\mathbf{b}_{\rho_i})$ for some $\rho_i \in [N]$, and $\mathsf{R}_\mathsf{T}$ knows
|
||||
$\mathsf{S}_\mathsf{T}$. In addition, $\mathsf{R}_\mathsf{T}$ provides an interactive \textsf{WI} argument that $(\mathbf{c}_0,\mathbf{c}_1)$ is indeed a transformation of $(\mathbf{a}_{\rho_i},\mathbf{b}_{\rho_i})$ for some $\rho_i \in [N]$, and $\mathsf{R}_\mathsf{T}$ knows
|
||||
a signature on $\mathfrak{m} = \mathsf{vdec}_{n+1,q-1}(\mathbf{a}_{\rho_i}^T | \mathbf{b}_{\rho_i}^T)^T \in \{0,1\}^{m_d}$.
|
||||
To this end, $\mathsf{R}_\mathsf{T}$ runs the prover in the ZK argument system in Section~\ref{subsection:ZK-protocol-3}.
|
||||
|
||||
@ -609,9 +608,9 @@ To this end, $\mathsf{R}_\mathsf{T}$ runs the prover in the ZK argument system i
|
||||
obtain $M' = \lfloor (\mathbf{c}_1 - \mathbf{S}^T \cdot \mathbf{c}_0) / ( q/2 ) \rceil \in \{0,1\}^t,$
|
||||
which is sent back to $\mathsf{R}_\mathsf{T}$. In addition, $\mathsf{S}_\mathsf{T}$ provides a zero-knowledge argument of knowledge of vector $\mathbf{y}= \mathbf{c}_1 - \mathbf{S}^T \cdot \mathbf{c}_0 - M' \cdot \lfloor q/2 \rfloor \in \ZZ^t$
|
||||
of norm $\| \mathbf{y} \|_{\infty} \leq q/5$ and small-norm matrices $\mathbf{E}\in \ZZ^{m \times t}$, $\mathbf{S} \in \ZZ^{n \times t}$ satisfying (modulo $q$)
|
||||
\begin{eqnarray} \label{test-transfer}
|
||||
\mathbf{P} &=& \mathbf{F}^T \cdot \mathbf{S} + \mathbf{E} ~ , \qquad \mathbf{c}_0^T \cdot \mathbf{S} + \mathbf{y}^T = \mathbf{c}_1^T - {M'}^T \cdot \lfloor q/2 \rfloor.
|
||||
\end{eqnarray}
|
||||
\begin{align} \label{test-transfer}
|
||||
\mathbf{P} &= \mathbf{F}^T \cdot \mathbf{S} + \mathbf{E} & \mathbf{c}_0^T \cdot \mathbf{S} + \mathbf{y}^T &= \mathbf{c}_1^T - {M'}^T \cdot \lfloor q/2 \rfloor.
|
||||
\end{align}
|
||||
To this end, $\mathsf{S}_\mathsf{T}$ runs the prover in the ZK argument system in Section~\ref{subsection:ZK-protocol-2}.
|
||||
\item[3.] If the ZK argument produced by $\mathsf{S}_\mathsf{T}$ does not properly verify at step 2, $\mathsf{R}_\mathsf{T}$ halts and outputs $\perp$. Otherwise, $\mathsf{R}_\mathsf{T}$ recalls
|
||||
the random string $\mu \in \{0,1\}^t$ that was chosen at step 1 and computes $M_{\rho_i}=M' \oplus \mu$. The transfer ends with $\mathsf{S}_\mathsf{T}$ and $\mathsf{R}_\mathsf{T}$
|
||||
@ -626,7 +625,7 @@ outputting $S_i=S_{i-1}$ and $R_i=R_{i-1}$, respectively.
|
||||
In the initialization phase, the sender has to repeat step 5 with each
|
||||
receiver to prove that $\left\{(\mathbf{a}_i,\mathbf{b}_i)\right\}_{i=1}^N$ are well-formed. Using the Fiat-Shamir heuristic \cite{FS86}, we can decrease this initialization
|
||||
cost from $O(N \cdot U)$ to $O(N)$ (regardless of the number of users $U$) by making the proof non-interactive.
|
||||
This modification also reduces each transfer to $5$ communication rounds since, even in the transfer phase, the sender's ZK arguments can be non-interactive and the receiver's arguments only need to be WI, which is preserved when the basic ZK protocol (which has a ternary challenge space) is repeated $\omega(\log n)$ times in parallel. To keep the security proof
|
||||
This modification also reduces each transfer to $5$ communication rounds since, even in the transfer phase, the sender's ZK arguments can be non-interactive and the receiver's arguments only need to be \textsf{WI}, which is preserved when the basic ZK protocol (which has a ternary challenge space) is repeated $\omega(\log n)$ times in parallel. To keep the security proof
|
||||
simple, we derive the matrix $\mathbf{F} \in \Zq^{n \times m}$ from a second random oracle.
|
||||
%which the sender can build his $\LWE$-based public key $\mathbf{P}=\mathbf{F} \cdot \mathbf{S} + \mathbf{E}$, for small-norm matrices $\mathbf{S} \in \ZZ^{n \times t}$
|
||||
%and $\mathbf{E} \in \ZZ^{m \times t}$.
|
||||
@ -685,11 +684,11 @@ samples vectors $\mathbf{e} \sample U(\{-1,0,1\}^m)$, $\mu \sample U(\{0,1\}^t)$
|
||||
(\mathbf{c}_0,\mathbf{c}_1) = \big( \mathbf{a}_{1} + \mathbf{F} \cdot \mathbf{e} , ~\mathbf{b}_{1} + \mathbf{P}^T \cdot \mathbf{e} + \mu \cdot \lfloor q/2 \rfloor + \nu \big) \in \ZZ_q^n \times \ZZ_q^t,
|
||||
\end{eqnarray*}
|
||||
which is a re-randomization of $(\mathbf{a}_{1},\mathbf{b}_{1} + \mu \cdot \lfloor q/2 \rfloor )$.
|
||||
Moreover, $\mathsf{R}_\mathsf{T}'$ uses the witness $\rho_i=1$ to faithfully generate an interactive WI argument that
|
||||
Moreover, $\mathsf{R}_\mathsf{T}'$ uses the witness $\rho_i=1$ to faithfully generate an interactive \textsf{WI} argument that
|
||||
$(\mathbf{c}_0,\mathbf{c}_1)$ is a re-randomization of $(\mathbf{a}_{\rho_i},\mathbf{b}_{\rho_i})$.
|
||||
It thus generates a WI argument of knowledge of vectors $\mathfrak{m} = \mathsf{vdec}_{n+t,q-1}(\mathbf{a}_1| \mathbf{b}_1) \in \{0,1\}^{m_d}$, $\mathbf{e} \in \{-1,0,1\}^t$, $\mu \in \{0,1\}^t$,
|
||||
It thus generates a \textsf{WI} argument of knowledge of vectors $\mathfrak{m} = \mathsf{vdec}_{n+t,q-1}(\mathbf{a}_1| \mathbf{b}_1) \in \{0,1\}^{m_d}$, $\mathbf{e} \in \{-1,0,1\}^t$, $\mu \in \{0,1\}^t$,
|
||||
$\nu \in [-B,B]^t$, $\tau \in \{0,1\}^{\ell}$ and $(\mathbf{v}_1^T | \mathbf{v}_2^T)^T \in \ZZ^{2m}$ satisfying relations~\eqref{eq:protocol-3-original}. %(\ref{statement-rand-un})-(\ref{statement-rand-deux}).
|
||||
By the statistically WI of the interactive argument system, this modification has no noticeable impact on the output distribution of a cheating sender $\hat{\mathsf{S}}$. Indeed, since we chose $B$ as a randomization parameter
|
||||
By the statistically \textsf{WI} of the interactive argument system, this modification has no noticeable impact on the output distribution of a cheating sender $\hat{\mathsf{S}}$. Indeed, since we chose $B$ as a randomization parameter
|
||||
such that $(m+1) \alpha q / B $ is negligible, the result of \cite[Section 4.1]{DS16} implies that always re-randomizing
|
||||
$(\mathbf{a}_{1},\mathbf{b}_{1} + \mu \cdot \lfloor q/2 \rfloor )$ leaves the view of $\hat{\mathsf{S}}$ statistically unchanged.
|
||||
We have $ | \Pr[W_2] -\Pr[W_1] | \leq \mathsf{negl}(\lambda). $ \smallskip
|
||||
@ -927,7 +926,7 @@ the maximal length $L \in \mathsf{poly}(n)$ of branching programs and their desi
|
||||
satisfies \eqref{ver-eq-block} and that $\|\mathbf{v}_\USR\| \leq \sigma \sqrt{2m},\mathbf{r}_\USR \leq \sigma \sqrt{m}$. If so, $\USR$ sets
|
||||
$C_\USR := C_{\USR} \cup \{\mathbf{x}\}$, $\mathsf{Cred}_\USR := \mathsf{Cred}_\USR \cup \{\crt_{\USR,\mathbf{x}}\}$ and updates its state $st_\USR=(\mathbf{e}_\USR,P_\USR,f_{DB},C_\USR,\mathsf{Cred}_\USR)$. If $\crt_{\USR,\mathbf{x}}$ does not properly verify, $\USR$ aborts the interaction and leaves $st_{\USR}$ unchanged. \smallskip
|
||||
\end{itemize}
|
||||
\item[\textsf{DBSetup}$\big(PK_I, \mathsf{DB}=\{(M_i,\BPR_i)\}_{i=1}^N \big)$:] The sender \textsf{DB}
|
||||
\item[\textsf{DBSetup}$\big(PK_I, \mathsf{DB}=\{(M_i,\BPR_i)\}_{i=1}^N \big)$:] The sender % \textsf{DB}
|
||||
has $\mathsf{DB}=\{(M_i,\BPR_i)\}_{i=1}^N $ which is a database of $N$ pairs made of a message
|
||||
$M_i \in \{0,1\}^{t}$ and a policy realized by a length-$L$
|
||||
branching program $\BPR_i = \{\var_i(\theta),\pi_{i,\theta,0},\pi_{i,\theta,1}\}_{\theta=1}^L$. %.of length $L \in \mathsf{poly}(n)$,
|
||||
@ -973,7 +972,7 @@ the maximal length $L \in \mathsf{poly}(n)$ of branching programs and their desi
|
||||
\end{itemize}
|
||||
|
||||
\item[\textsf{Transfer}$\big(\mathsf{DB}(SK_{\mathsf{DB}},PK_{\mathsf{DB}},PK_I),\USR(\rho,st_\USR,PK_I,PK_\mathsf{DB},ER_\rho,\BPR_\rho) \big)$:]
|
||||
Given an index $\rho \in [N]$, a record
|
||||
From an index $\rho \in [N]$, a record
|
||||
$ER_\rho =\big(\mathbf{a}_\rho,\mathbf{b}_\rho,(\tau_\rho,\mathbf{v}_\rho ) \big) $ and a policy $\BPR_{\rho}$, the user $\USR$ parses
|
||||
$st_\USR$ as $(\mathbf{e}_\USR,P_{\USR},f_{DB},C_\USR,\mathsf{Cred}_{\USR})$. If $C_\USR$ does not contain any $\mathbf{x} \in \{0,1\}^\kappa$ s.t.
|
||||
$\BPR_{\rho}(\mathbf{x})=1$ and $\mathsf{Cred}_{\USR}$ contains the corresponding $\crt_{\USR,\mathbf{x}}$, $\USR$ outputs $\perp$. Otherwise, he
|
||||
@ -1020,7 +1019,7 @@ $t$-bit messages $\{M_i\}_{i=1}^N$ satisfying~\eqref{PK-gen-ac}-\eqref{init-db-a
|
||||
(\mathbf{c}_0,\mathbf{c}_1) = \big( \mathbf{a}_{\rho} + \mathbf{F} \cdot \mathbf{e} , ~\mathbf{b}_{\rho} + \mathbf{P}^T \cdot \mathbf{e} + \mu \cdot \lfloor q/2 \rfloor + \nu \big) \in \Zq^n \times \Zq^t,
|
||||
\qquad
|
||||
\end{eqnarray}
|
||||
which is sent to $\mathsf{DB}$ as a re-randomization of $(\mathbf{a}_{\rho},\mathbf{b}_{\rho} + \mu \cdot \lfloor q/2 \rfloor )$. Then, $\USR$ provides an interactive WI argument that $(\mathbf{c}_0,\mathbf{c}_1)$ is a re-randomization of some $(\mathbf{a}_{\rho},\mathbf{b}_{\rho})$ associated
|
||||
which is sent to $\mathsf{DB}$ as a re-randomization of $(\mathbf{a}_{\rho},\mathbf{b}_{\rho} + \mu \cdot \lfloor q/2 \rfloor )$. Then, $\USR$ provides an interactive \textsf{WI} argument that $(\mathbf{c}_0,\mathbf{c}_1)$ is a re-randomization of some $(\mathbf{a}_{\rho},\mathbf{b}_{\rho})$ associated
|
||||
with a policy $\BPR_\rho$ for which $\USR$ has a credential $\crt_{\USR,x}$ for some $\mathbf{x} \in \{0,1\}^\kappa$ such that $\BPR_\rho (\mathbf{x})=1$.
|
||||
%To this end, $\USR$ uses the technique of Section \ref{ineff-method}.
|
||||
In addition, $\USR$
|
||||
@ -1061,40 +1060,42 @@ satisfying the relations (modulo $q$)
|
||||
%\begin{eqnarray} \label{statement-rand-deux-ac}
|
||||
%\mathbf{A}\cdot \mathbf{v}_1 + \mathbf{A}_0 \cdot \mathbf{v}_2 + \sum_{j=1}^\ell \mathbf{A}_j \cdot (\tau[j]\cdot \mathbf{v}_2) - \mathbf{D}\cdot \mathfrak{m} = \mathbf{u},
|
||||
%\end{eqnarray}
|
||||
\begin{eqnarray}\label{statement-rand-trois-ac}
|
||||
\begin{cases}
|
||||
\mathbf{H}_{2n+t,q-1} \cdot \mathfrak{m} +
|
||||
\left[ \begin{array}{c|c|c|c}
|
||||
~ \mathbf{F} ~& ~ &~ & ~ \\ \hline \rule{0pt}{2.6ex}
|
||||
~\mathbf{P}^T ~ & ~ \mathbf{I}_t \cdot \lfloor q/2 \rfloor ~ & ~\mathbf{I}_t~ & ~ \\ \hline
|
||||
& & & - \mathbf{A}_{\mathrm{HBP}}
|
||||
\end{array} \right] \cdot \begin{bmatrix} \mathbf{e} \\ \hline \mu \\ \hline \nu \\ \hline
|
||||
\mathbf{z}_{\BPR,\rho}
|
||||
\end{bmatrix} = \begin{bmatrix} \mathbf{c}_0 \\ \hline \mathbf{c}_1 \\ \hline \mathbf{0}^n \end{bmatrix} \\ \qquad \quad \smallskip
|
||||
\text{{\scriptsize // (recall that $(\mathbf{a}_\rho^T | \mathbf{b}_{\rho}^T | \mathbf{h}_{\BPR,\rho}^T )^T = \mathbf{H}_{2n+t,q-1} \cdot \mathfrak{m} $)}} \\[2.5pt]
|
||||
\mathbf{A}\cdot \mathbf{v}_1 + \mathbf{A}_0 \cdot \mathbf{v}_2 + \sum_{j=1}^\ell \mathbf{A}_j \cdot (\tau[j]\cdot \mathbf{v}_2) - \mathbf{D}\cdot \mathfrak{m} = \mathbf{u} \\[2.5pt]
|
||||
\mathbf{A}_{I}\cdot \mathbf{v}_{\mathsf{U},1} + \mathbf{A}_{I,0}\cdot \mathbf{v}_{\mathsf{U},2} +
|
||||
\sum_{j=1}^{\ell_I}\mathbf{A}_{I, j}\cdot (\tau_{\mathsf{U}}[j]\cdot \mathbf{v}_{\mathsf{U},2}) - \mathbf{D}_I\cdot \widehat{\mathfrak{m}}_{\mathsf{U}, \mathbf{x}} = \mathbf{u}_I \\[2.5pt]
|
||||
\mathbf{D}_{I,0}\cdot \mathbf{r}_{\mathsf{U}} + \mathbf{D}_{I,1}\cdot \mathfrak{m}_{\mathsf{U}, \mathbf{x}} - \mathbf{H}_{n,q-1}\cdot \widehat{\mathfrak{m}}_{\mathsf{U}, \mathbf{x}} = \mathbf{0} \\[2.5pt]
|
||||
\left[
|
||||
\begin{array}{c|c}
|
||||
\mathbf{H}_{n,q-1} & \mathbf{0} \\
|
||||
\hline \rule{0pt}{2.6ex}
|
||||
\mathbf{0} & \mathbf{I}_\kappa \\
|
||||
\end{array}
|
||||
\right]\cdot {\mathfrak{m}}_{\USR,\mathbf{x}} + \left[
|
||||
\begin{array}{c}
|
||||
-\bar{\mathbf{A}} \\
|
||||
\mathbf{0} \\
|
||||
\end{array}
|
||||
\right]\cdot \mathbf{e}_{\mathsf{U}} + \left[
|
||||
\begin{array}{c}
|
||||
\mathbf{0} \\
|
||||
-\mathbf{I}_\kappa \\
|
||||
\end{array}
|
||||
\right]\cdot \mathbf{x} = \mathbf{0}
|
||||
\end{cases}
|
||||
\end{eqnarray}
|
||||
{\footnotesize
|
||||
\begin{eqnarray}\label{statement-rand-trois-ac}
|
||||
\begin{cases}
|
||||
\mathbf{H}_{2n+t,q-1} \cdot \mathfrak{m} +
|
||||
\left[ \begin{array}{c|c|c|c}
|
||||
~ \mathbf{F} ~& ~ &~ & ~ \\ \hline \rule{0pt}{2.6ex}
|
||||
~\mathbf{P}^T ~ & ~ \mathbf{I}_t \cdot \lfloor q/2 \rfloor ~ & ~\mathbf{I}_t~ & ~ \\ \hline
|
||||
& & & - \mathbf{A}_{\mathrm{HBP}}
|
||||
\end{array} \right] \cdot \begin{bmatrix} \mathbf{e} \\ \hline \mu \\ \hline \nu \\ \hline
|
||||
\mathbf{z}_{\BPR,\rho}
|
||||
\end{bmatrix} = \begin{bmatrix} \mathbf{c}_0 \\ \hline \mathbf{c}_1 \\ \hline \mathbf{0}^n \end{bmatrix} \\ \qquad \quad \smallskip
|
||||
\text{{\scriptsize // (recall that $(\mathbf{a}_\rho^T | \mathbf{b}_{\rho}^T | \mathbf{h}_{\BPR,\rho}^T )^T = \mathbf{H}_{2n+t,q-1} \cdot \mathfrak{m} $)}} \\[2.5pt]
|
||||
\mathbf{A}\cdot \mathbf{v}_1 + \mathbf{A}_0 \cdot \mathbf{v}_2 + \sum_{j=1}^\ell \mathbf{A}_j \cdot (\tau[j]\cdot \mathbf{v}_2) - \mathbf{D}\cdot \mathfrak{m} = \mathbf{u} \\[2.5pt]
|
||||
\mathbf{A}_{I}\cdot \mathbf{v}_{\mathsf{U},1} + \mathbf{A}_{I,0}\cdot \mathbf{v}_{\mathsf{U},2} +
|
||||
\sum_{j=1}^{\ell_I}\mathbf{A}_{I, j}\cdot (\tau_{\mathsf{U}}[j]\cdot \mathbf{v}_{\mathsf{U},2}) - \mathbf{D}_I\cdot \widehat{\mathfrak{m}}_{\mathsf{U}, \mathbf{x}} = \mathbf{u}_I \\[2.5pt]
|
||||
\mathbf{D}_{I,0}\cdot \mathbf{r}_{\mathsf{U}} + \mathbf{D}_{I,1}\cdot \mathfrak{m}_{\mathsf{U}, \mathbf{x}} - \mathbf{H}_{n,q-1}\cdot \widehat{\mathfrak{m}}_{\mathsf{U}, \mathbf{x}} = \mathbf{0} \\[2.5pt]
|
||||
\left[
|
||||
\begin{array}{c|c}
|
||||
\mathbf{H}_{n,q-1} & \mathbf{0} \\
|
||||
\hline \rule{0pt}{2.6ex}
|
||||
\mathbf{0} & \mathbf{I}_\kappa \\
|
||||
\end{array}
|
||||
\right]\cdot {\mathfrak{m}}_{\USR,\mathbf{x}} + \left[
|
||||
\begin{array}{c}
|
||||
-\bar{\mathbf{A}} \\
|
||||
\mathbf{0} \\
|
||||
\end{array}
|
||||
\right]\cdot \mathbf{e}_{\mathsf{U}} + \left[
|
||||
\begin{array}{c}
|
||||
\mathbf{0} \\
|
||||
-\mathbf{I}_\kappa \\
|
||||
\end{array}
|
||||
\right]\cdot \mathbf{x} = \mathbf{0}
|
||||
\end{cases}
|
||||
\end{eqnarray}
|
||||
}
|
||||
and such that $\mathbf{z}_{\BPR,\rho} \in [0,4]^\zeta$ encodes $\BPR_\rho$ such that $\BPR_\rho (\mathbf{x})=1$.
|
||||
This is done by running the argument system described in Section~\ref{subsection:ZK-Protocol4-BP}.
|
||||
|
||||
@ -1478,33 +1479,34 @@ Let $n, m , m_d, q, t, \ell, B$ be the parameters defined in Section~\ref{OT-sch
|
||||
$\mathbf{c}_0 \in \mathbb{Z}_q^n, \hspace*{2.5pt}\mathbf{c}_1 \in \mathbb{Z}_q^t, \hspace*{2.5pt}\mathbf{u} \in \mathbb{Z}_q^n$. \smallskip
|
||||
\item[Prover's goal] is to prove knowledge of $\mathfrak{m} \in \{0,1\}^{m_d}$, $\mu \in \{0,1\}^t$, $\mathbf{e} \in \{-1,0,1\}^t$, $\nu \in [-B,B]^t$, $\tau = (\tau[1], \ldots, \tau[\ell])^T \in \{0,1\}^\ell$, $\mathbf{v}_1, \mathbf{v}_2 \in [-\beta, \beta]^m$ such that the following equations hold:
|
||||
\end{description}
|
||||
{\small
|
||||
\begin{eqnarray}\label{eq:protocol-3-original}
|
||||
\begin{cases}
|
||||
\mathbf{A}\cdot \mathbf{v}_1 + \mathbf{A}_0 \cdot \mathbf{v}_2 + \sum_{j=1}^\ell \mathbf{A}_j \cdot (\tau[j]\cdot \mathbf{v}_2) - \mathbf{D}\cdot \mathfrak{m} = \mathbf{u} \bmod q; \\
|
||||
\mathbf{H}_{n+t, q-1}\hspace*{-2pt}\cdot \hspace*{-2pt}\mathfrak{m} + \left(
|
||||
\begin{array}{c}
|
||||
\mathbf{F} \\
|
||||
\mathbf{P}^T \\
|
||||
\end{array}
|
||||
\right)\hspace*{-2pt}\cdot\hspace*{-2pt} \mathbf{e} + \left(
|
||||
\begin{array}{c}
|
||||
\mathbf{0}^{n \times t} \\
|
||||
\lfloor \frac{q}{2}\rfloor \hspace*{-2pt}\cdot\hspace*{-2pt} \mathbf{I}_t\\
|
||||
\end{array}
|
||||
\right) \hspace*{-2pt}\cdot\hspace*{-2pt} \mu + \left(
|
||||
\begin{array}{c}
|
||||
\mathbf{0}^{n \times t} \\
|
||||
\mathbf{I}_t \\
|
||||
\end{array}
|
||||
\right) \hspace*{-2pt}\cdot\hspace*{-2pt} \nu = \left(
|
||||
\begin{array}{c}
|
||||
\mathbf{c}_0 \\
|
||||
\mathbf{c}_1 \\
|
||||
\end{array}
|
||||
\right) \bmod q. ~~~~~
|
||||
\mathbf{A}\cdot \mathbf{v}_1 + \mathbf{A}_0 \cdot \mathbf{v}_2 + \sum_{j=1}^\ell \mathbf{A}_j \cdot (\tau[j]\cdot \mathbf{v}_2) - \mathbf{D}\cdot \mathfrak{m} = \mathbf{u} \bmod q; \\
|
||||
\mathbf{H}_{n+t, q-1}\hspace*{-2pt}\cdot \hspace*{-2pt}\mathfrak{m} + \left(
|
||||
\begin{array}{c}
|
||||
\mathbf{F} \\
|
||||
\mathbf{P}^T \\
|
||||
\end{array}
|
||||
\right)\hspace*{-2pt}\cdot\hspace*{-2pt} \mathbf{e} + \left(
|
||||
\begin{array}{c}
|
||||
\mathbf{0}^{n \times t} \\
|
||||
\lfloor \frac{q}{2}\rfloor \hspace*{-2pt}\cdot\hspace*{-2pt} \mathbf{I}_t\\
|
||||
\end{array}
|
||||
\right) \hspace*{-2pt}\cdot\hspace*{-2pt} \mu + \left(
|
||||
\begin{array}{c}
|
||||
\mathbf{0}^{n \times t} \\
|
||||
\mathbf{I}_t \\
|
||||
\end{array}
|
||||
\right) \hspace*{-2pt}\cdot\hspace*{-2pt} \nu = \left(
|
||||
\begin{array}{c}
|
||||
\mathbf{c}_0 \\
|
||||
\mathbf{c}_1 \\
|
||||
\end{array}
|
||||
\right) \bmod q. ~~~~~
|
||||
\end{cases}
|
||||
\end{eqnarray}
|
||||
For this purpose, we perform the following transformations on the witnesses. \smallskip \smallskip
|
||||
\end{eqnarray}}
|
||||
For this purpose, we perform the following transformations on the witnesses. \medskip
|
||||
|
||||
|
||||
\noindent
|
||||
@ -2089,7 +2091,7 @@ an index $\rho_i \in [1,N]$. It interacts as follows with the sender $\mathsf{S}
|
||||
\qquad
|
||||
\end{eqnarray}
|
||||
which is a re-randomization of $(\mathbf{a}_{\rho_i},\mathbf{b}_{\rho_i} + \mu \cdot \lfloor q/2 \rfloor )$. The resulting ciphertext $(\mathbf{c}_0,\mathbf{c}_1)$ is sent to
|
||||
$\mathsf{S}_\mathsf{T}$. In addition, $\mathsf{R}_\mathsf{T}$ provides an interactive WI argument that $(\mathbf{c}_0,\mathbf{c}_1)$ is indeed a re-randomization of $(\mathbf{a}_{\rho_i},\mathbf{b}_{\rho_i})$ for some index $\rho_i \in [N]$.
|
||||
$\mathsf{S}_\mathsf{T}$. In addition, $\mathsf{R}_\mathsf{T}$ provides an interactive \textsf{WI} argument that $(\mathbf{c}_0,\mathbf{c}_1)$ is indeed a re-randomization of $(\mathbf{a}_{\rho_i},\mathbf{b}_{\rho_i})$ for some index $\rho_i \in [N]$.
|
||||
To this end, $\mathsf{R}_\mathsf{T}$ argues knowledge of short vectors $\mathfrak{m} = \mathsf{vdec}_{n+1,q-1}(\mathbf{a}_i| \mathbf{b}_i) \in \{0,1\}^{m_d}$, $\mathbf{e} \in \{-1,0,1\}^t$, $\mu \in \{0,1\}^t$,
|
||||
$\nu \in [-B,B]^t$, $\tau \in \{0,1\}^{\ell}$ and $\mathbf{v} =(\mathbf{v}_1^T | \mathbf{v}_2^T)^T \in \ZZ^{2m}$ such that
|
||||
\begin{eqnarray} \label{statement-rand-un-app}
|
||||
@ -2105,7 +2107,7 @@ and
|
||||
\vdots \\ \hline \rule{0pt}{2.5ex} \tau[\ell] \cdot \mathbf{v}_2 \end{bmatrix} = \mathbf{u} + \mathbf{D} \cdot \mathfrak{m} ~\bmod q
|
||||
\end{eqnarray}
|
||||
|
||||
\item[2.] If the WI argument of step 1 verifies, $\mathsf{S}_\mathsf{T}$ uses $\mathbf{S} \in \chi^{n \times t}$ to decrypt $(\mathbf{c}_0,\mathbf{c}_1) \in \Zq^n \times \Zq^t$ and
|
||||
\item[2.] If the \textsf{WI} argument of step 1 verifies, $\mathsf{S}_\mathsf{T}$ uses $\mathbf{S} \in \chi^{n \times t}$ to decrypt $(\mathbf{c}_0,\mathbf{c}_1) \in \Zq^n \times \Zq^t$ and
|
||||
obtain $$M' = \lfloor (\mathbf{c}_1 - \mathbf{S}^T \cdot \mathbf{c}_0) / ( q/2 ) \rceil \in \{0,1\}^t,$$
|
||||
which is sent back to $\mathsf{R}_\mathsf{T}$. In addition, $\mathsf{S}_\mathsf{T}$ provides a NIZK argument $\pi_T$ of knowledge of $\mathbf{y}= \mathbf{c}_1 - \mathbf{S}^T \cdot \mathbf{c}_0 - M' \cdot \lfloor q/2 \rfloor \in \ZZ^t$
|
||||
of norm $\| \mathbf{y} \|_{\infty} \leq q/5$ and $\mathbf{E}=[\mathbf{e}_1|\ldots | \mathbf{e}_t] \in \chi^{m \times t}$ satisfying (modulo $q$)
|
||||
@ -2114,16 +2116,17 @@ of norm $\| \mathbf{y} \|_{\infty} \leq q/5$ and $\mathbf{E}=[\mathbf{e}_1|\ldot
|
||||
\end{eqnarray}
|
||||
Given $\mathbf{y}=(\mathbf{y}[1],\ldots,\mathbf{y}[t])^T \in \ZZ^t$ and $\mathbf{S}=[\mathbf{s}_1| \ldots | \mathbf{s}_t]$, this amounts to proving, for each $j \in [t]$, knowledge
|
||||
of $\mathbf{s}_j \in \chi^n$, $\mathbf{y}[j] \in \ZZ$ such that $|\mathbf{y}[j] | < q/4$ and $\mathbf{e}_j \in \chi^m$, such that
|
||||
\begin{eqnarray} \label{sender-proof-two-app}
|
||||
\begin{align} \label{sender-proof-two-app}
|
||||
\left[ \begin{array}{c|c|c}
|
||||
~ \mathbf{F}^T ~ & ~ \mathbf{I}_m ~ & ~~ \\ \hline
|
||||
\rule{0pt}{2.5ex} \mathbf{c}_0^T ~ & & 1
|
||||
\end{array} \right]
|
||||
\cdot \begin{pmatrix} \mathbf{s}_j \\ \hline \mathbf{e}_j \\ \hline \mathbf{y}[j] \end{pmatrix} = \begin{pmatrix}
|
||||
\cdot \begin{pmatrix} \mathbf{s}_j \\ \hline \mathbf{e}_j \\ \hline \mathbf{y}[j] \end{pmatrix} &=
|
||||
\begin{pmatrix}
|
||||
\mathbf{p}_j \\ \hline
|
||||
\rule{0pt}{2.5ex} \mathbf{c}_1[j] - M'[j] \cdot \lfloor q/2 \rfloor
|
||||
\end{pmatrix} \qquad~ \forall j \in [t], \qquad
|
||||
\end{eqnarray}
|
||||
\end{pmatrix} & \forall j \in [t],
|
||||
\end{align}
|
||||
where $\mathbf{c}_1=(\mathbf{c}_1[1],\ldots,\mathbf{c}_1[t])^T $ and $M' = (M'[1],\ldots,M'[t])^T$. Let the NIZK argument be $\pi_T=(
|
||||
\{\mathsf{Comm}_{T,j}\}_{j=1}^\varsigma,\mathsf{Chall}_T,\{\mathsf{Resp}_{T,j}\}_{j=1}^\varsigma)$,
|
||||
where $\mathsf{Chall}_T = H_{\mathsf{FS}}\big( (\mathbf{F},\mathbf{P}, \mathbf{c}_0, \mathbf{c}_{1}),
|
||||
@ -2217,12 +2220,12 @@ The above $\OTA$ protocol provides receiver security under the $\SIS$ assumption
|
||||
\begin{eqnarray*}
|
||||
(\mathbf{c}_0,\mathbf{c}_1) = \big( \mathbf{a}_{1} + \mathbf{F} \cdot \mathbf{e} , ~\mathbf{b}_{1} + \mathbf{P}^T \cdot \mathbf{e} + \mu \cdot \lfloor q/2 \rfloor + \nu \big) \in \Zq^n \times \Zq^t,
|
||||
\end{eqnarray*}
|
||||
which is a re-randomization of $(\mathbf{a}_{1},\mathbf{b}_{1} + \mu \cdot \lfloor q/2 \rfloor )$. Moreover, $\mathsf{R}_\mathsf{T}'$ uses the witness $\rho_i=1$ to faithfully generate an interactive WI argument that
|
||||
which is a re-randomization of $(\mathbf{a}_{1},\mathbf{b}_{1} + \mu \cdot \lfloor q/2 \rfloor )$. Moreover, $\mathsf{R}_\mathsf{T}'$ uses the witness $\rho_i=1$ to faithfully generate an interactive \textsf{WI} argument that
|
||||
$(\mathbf{c}_0,\mathbf{c}_1)$ is a re-randomization of $(\mathbf{a}_{\rho_i},\mathbf{b}_{\rho_i})$.
|
||||
It thus generates a WI argument of knowledge of vectors $\mathfrak{m} = \mathsf{vdec}_{n+t,q-1}(\mathbf{a}_1| \mathbf{b}_1) \in \{0,1\}^{m_d}$, $\mathbf{e} \in \{-1,0,1\}^t$, $\mu \in \{0,1\}^t$,
|
||||
It thus generates a \textsf{WI} argument of knowledge of vectors $\mathfrak{m} = \mathsf{vdec}_{n+t,q-1}(\mathbf{a}_1| \mathbf{b}_1) \in \{0,1\}^{m_d}$, $\mathbf{e} \in \{-1,0,1\}^t$, $\mu \in \{0,1\}^t$,
|
||||
$\nu \in [-B,B]^t$, $\tau \in \{0,1\}^{\ell}$ and $(\mathbf{v}_1^T | \mathbf{v}_2^T)^T \in \ZZ^{2m}$ satisfying relations~\eqref{eq:protocol-3-original}.
|
||||
%(\ref{statement-rand-un})-(\ref{statement-rand-deux}).
|
||||
By the statistically WI of the interactive argument system, this modification has no noticeable impact on the output distribution of a cheating sender $\hat{\mathsf{S}}$ whatsoever.
|
||||
By the statistically \textsf{WI} of the interactive argument system, this modification has no noticeable impact on the output distribution of a cheating sender $\hat{\mathsf{S}}$ whatsoever.
|
||||
We have $ | \Pr[W_4] -\Pr[W_3] | \in \mathsf{negl}(\lambda). $ \smallskip
|
||||
\end{description}
|
||||
In $\textsf{Exp}_4$, we define the ideal-world cheating sender $\hat{\mathsf{S}}'$ in the following way. It programs the random oracle $H_F : \{0,1\}^\ast
|
||||
|
Reference in New Issue
Block a user