Start structure
This commit is contained in:
parent
245a6c8ded
commit
4a1e6fd552
2
abstract.tex
Normal file
2
abstract.tex
Normal file
@ -0,0 +1,2 @@
|
||||
\chapter*{Résumé}
|
||||
\addcontentsline{toc}{chapter}{Résumé}
|
@ -1,3 +1,6 @@
|
||||
\thispagestyle{empty}
|
||||
\chapter*{Remerciements}
|
||||
\addcontentsline{toc}{chapter}{Remerciements}
|
||||
|
||||
|
||||
\begin{otherlanguage}{french}
|
||||
\end{otherlanguage}
|
||||
|
3
chap-introduction.tex
Normal file
3
chap-introduction.tex
Normal file
@ -0,0 +1,3 @@
|
||||
\chapter{Introduction}
|
||||
\pagenumbering{arabic}
|
||||
\pagestyle{fancy}
|
90
chap-lattices.tex
Normal file
90
chap-lattices.tex
Normal file
@ -0,0 +1,90 @@
|
||||
\chapter{Lattices}
|
||||
|
||||
A (full-rank) lattice~$L$ is defined as the set of all integer linear
|
||||
combinations of some linearly independent basis
|
||||
vectors~$(\mathbf{b}_i)_{i\leq n}$ belonging to some~$\RR^n$. We work with $q$-ary lattices, for some prime $q$.
|
||||
\begin{definition} \label{de:qary-lattices}
|
||||
Let~$m \geq n \geq 1$, a prime~$q \geq 2$, $\mathbf{A} \in \ZZ_q^{n \times m}$ and $\mathbf{u} \in \ZZ_q^n$, define
|
||||
$\Lambda_q(\mathbf{A}) := \{ \mathbf{e} \in \ZZ^m \mid \exists \mathbf{s} \in \ZZ_q^n ~\text{ s.t. }~\mathbf{A}^T \cdot \mathbf{s} = \mathbf{e} \bmod q \}$ as well as
|
||||
\begin{align*}
|
||||
\Lambda_q^{\perp} (\mathbf{A}) &:= \{\mathbf{e} \in \ZZ^m \mid \mathbf{A} \cdot \mathbf{e} = \mathbf{0}^n \bmod q \},&
|
||||
\Lambda_q^{\mathbf{u}} (\mathbf{A}) &:= \{\mathbf{e} \in \ZZ^m \mid \mathbf{A} \cdot \mathbf{e} = \mathbf{u} \bmod q \}
|
||||
\end{align*}
|
||||
For any $\mathbf{t} \in \Lambda_q^{\mathbf{u}} (\mathbf{A})$, $\Lambda_q^{\mathbf{u}}(\mathbf{A})=\Lambda_q^{\perp}(\mathbf{A}) + \mathbf{t}$ so that $\Lambda_q^{\mathbf{u}} (\mathbf{A}) $
|
||||
is a shift of $\Lambda_q^{\perp} (\mathbf{A})$.
|
||||
\end{definition}
|
||||
|
||||
|
||||
\noindent For a lattice~$L$, a vector $\mathbf{c} \in \RR^n$ and a real~$\sigma>0$, define the function
|
||||
$\rho_{\sigma,\mathbf{c}}(\mathbf{x}) = \exp(-\pi\|\mathbf{x}- \mathbf{c} \|^2/\sigma^2)$.
|
||||
The discrete Gaussian distribution of support~$L$, parameter~$\sigma$ and center $\mathbf{c}$ is defined as
|
||||
$D_{L,\sigma,\mathbf{c}}(\mathbf{y}) = \rho_{\sigma,\mathbf{c}}(\mathbf{y})/\rho_{\sigma,\mathbf{c}}(L)$ for any $\mathbf{y} \in L$.
|
||||
We denote by $D_{L,\sigma }(\mathbf{y}) $ the distribution centered in $\mathbf{c}=\mathbf{0}$.
|
||||
We will extensively use the fact that samples
|
||||
from~$D_{L,\sigma}$ are short with overwhelming probability.
|
||||
|
||||
\begin{lemma}[{\cite[Le.~1.5]{Bana93}}]
|
||||
\label{le:small}
|
||||
For any lattice~$L \subseteq
|
||||
\RR^n$ and positive real number~$\sigma>0$,
|
||||
we have $\Pr_{\mathbf{b} \sample D_{L,\sigma}} [\|\mathbf{b}\|
|
||||
\leq \sqrt{n} \sigma] \geq 1-2^{-\Omega(n)}.$
|
||||
\end{lemma}
|
||||
|
||||
\noindent As shown by Gentry {\em et al.}~\cite{GePeVa08}, Gaussian
|
||||
distributions with lattice support can be sampled efficiently
|
||||
given a sufficiently short basis of the lattice.
|
||||
|
||||
\begin{lemma}[{\cite[Le.~2.3]{BLPRS13}}]
|
||||
\label{le:GPV}
|
||||
There exists a $\PPT$ (probabilistic polynomial-time) algorithm $\textsf{GPVSample}$ that takes as inputs a
|
||||
basis~$\mathbf{B}$ of a lattice~$L \subseteq \ZZ^n$ and a
|
||||
rational~$\sigma \geq \|\widetilde{\mathbf{B}}\| \cdot \Omega(\sqrt{\log n})$,
|
||||
and outputs vectors~$\mathbf{b} \in L$ with distribution~$D_{L,\sigma}$.
|
||||
\end{lemma}
|
||||
|
||||
%We
|
||||
%use an algorithm that jointly samples a uniform~$\mathbf{A}$ and a short
|
||||
%basis of~$\Lambda_q^{\perp}(\mathbf{A})$.
|
||||
|
||||
\begin{lemma}[{\cite[Th.~3.2]{AlPe09}}]
|
||||
\label{le:TrapGen}
|
||||
There exists a $\PPT$ algorithm $\TrapGen$ that takes as inputs $1^n$,
|
||||
$1^m$ and an integer~$q \geq 2$ with~$m \geq \Omega(n \log q)$, and
|
||||
outputs a matrix~$\mathbf{A} \in \ZZ_q^{n \times m}$ and a
|
||||
basis~$\mathbf{T}_{\mathbf{A}}$ of~$\Lambda_q^{\perp}(\mathbf{A})$ such
|
||||
that~$\mathbf{A}$ is within statistical distance~$2^{-\Omega(n)}$
|
||||
to~$U(\ZZ_q^{n \times m})$, and~$\|\widetilde{\mathbf{T}_{\mathbf{A}}}\| \leq
|
||||
\bigO(\sqrt{n \log q})$.
|
||||
\end{lemma}
|
||||
|
||||
\noindent Lemma~\ref{le:TrapGen} is often combined with the sampler from Lemma~\ref{le:GPV}. Micciancio and Peikert~\cite{MiPe12} recently proposed a more efficient
|
||||
approach for this combined task, which should be preferred in practice but, for the sake of simplicity, we present our schemes using~$\TrapGen$.
|
||||
|
||||
We also make use of an algorithm that extends a trapdoor for~$\mathbf{A} \in \ZZ_q^{n \times m}$ to a trapdoor of any~$\mathbf{B} \in \ZZ_q^{n \times m'}$ whose left~$n \times m$
|
||||
submatrix is~$\mathbf{A}$.
|
||||
|
||||
\begin{lemma}[{\cite[Le.~3.2]{CaHoKiPe10}}]\label{lem:extbasis}
|
||||
There exists a $\PPT$ algorithm $\ExtBasis$ that takes as inputs a
|
||||
matrix~$\mathbf{B} \in \ZZ_q^{n \times m' }$ whose first~$m$ columns
|
||||
span~$\ZZ_q^n$, and a basis~$\mathbf{T}_{\mathbf{A}}$
|
||||
of~$\Lambda_q^{\perp}(\mathbf{A})$ where~$\mathbf{A}$ is the left~$n \times
|
||||
m$ submatrix of~$\mathbf{B}$, and outputs a basis~$\mathbf{T}_{\mathbf{B}}$
|
||||
of~$\Lambda_q^{\perp}(\mathbf{B})$ with~$\|\widetilde{\mathbf{T}_{\mathbf{B}}}\|
|
||||
\leq \|\widetilde{\mathbf{T}_{\mathbf{A}}}\|$.
|
||||
\end{lemma}
|
||||
|
||||
\noindent In our security proofs, analogously to \cite{Boy10,BHJKS15} we also use a technique due to Agrawal, Boneh and Boyen~\cite{ABB1} that implements
|
||||
an all-but-one trapdoor mechanism (akin to the one of Boneh and Boyen \cite{BB04}) in the lattice setting.
|
||||
%In other words we need the following algorithm:
|
||||
|
||||
\begin{lemma}[{\cite[Th.~19]{ABB1}}]\label{lem:sampler}
|
||||
There exists a $\PPT$ algorithm $\SampleR$ that takes as inputs matrices $\mathbf A, \mathbf C \in \ZZ_q^{n \times m}$, a low-norm matrix $\mathbf R \in \ZZ^{m \times m}$,
|
||||
a short basis $\mathbf{T_C} \in \ZZ^{m \times m}$ of $\Lambda_q^{\perp}(\mathbf{C})$, a vector $\mathbf u \in \ZZ_q^{n}$ and a rational $\sigma$ such that $\sigma \geq \|
|
||||
\widetilde{\mathbf{T_C}}\| \cdot \Omega(\sqrt{\log n})$, and outputs a short vector $\mathbf{b} \in \ZZ^{2m}$ such that $\left[ \begin{array}{c|c} \mathbf A ~ &~ \mathbf A
|
||||
\cdot \mathbf R + \mathbf C \end{array} \right]\cdot \mathbf b = \mathbf u \bmod q$ and with distribution statistically close to $D_{L,\sigma}$ where $L$ denotes the shifted
|
||||
lattice $\Lambda^\mathbf{u}_q \left( \left[ \begin{array}{c|c} \mathbf A ~&~ \mathbf A \cdot \mathbf R + \mathbf C \end{array} \right] \right)$.
|
||||
%$\{ \mathbf x \in \ZZ^{2 m} : \left[ \begin{array}{c|c} \mathbf A ~&~ \mathbf A \cdot \mathbf R + \mathbf C \end{array} \right] \cdot \mathbf x = \mathbf u \bmod q \}$.
|
||||
\end{lemma}
|
||||
|
||||
|
1
chap-pairings.tex
Normal file
1
chap-pairings.tex
Normal file
@ -0,0 +1 @@
|
||||
\chapter{Pairing-based cryptography}
|
@ -85,7 +85,7 @@ Nom Prénom, grade/qualité, établissement/entreprise \hfill Examinateur/trice
|
||||
\bigskip
|
||||
|
||||
%Nom Prénom, grade/qualité, établissement/entreprise \hfill Directeur/trice de thèse
|
||||
Benoît Libert, Directeur de Recherche, CNRS et École Normale Supérieure de Lyon\hfill Directeur de thèse
|
||||
Benoît Libert, Directeur de Recherche, CNRS et ENS de Lyon\hfill Directeur de thèse
|
||||
|
||||
%Nom Prénom, grade/qualité, établissement/entreprise \hfill Co-directeur/trice de thèse % le cas échéant
|
||||
|
||||
|
18
macros.tex
Normal file
18
macros.tex
Normal file
@ -0,0 +1,18 @@
|
||||
% Abbreviations
|
||||
%% Usual
|
||||
\newcommand{\PPT}{\textsf{PPT}\xspace}
|
||||
%% Algorithms
|
||||
\newcommand{\TrapGen}{\textsf{TrapGen}\xspace}
|
||||
\newcommand{\ExtBasis}{\textsf{ExtBasis}\xspace}
|
||||
\newcommand{\SampleR}{\textsf{SampleR}\xspace}
|
||||
|
||||
% Operators
|
||||
\newcommand{\sample}{\xspace\ensuremath{\hookleftarrow}\xspace}
|
||||
\newcommand{\bigO}{\ensuremath{\mathcal{O}}}
|
||||
|
||||
% Sets
|
||||
%% Usual sets
|
||||
\newcommand{\RR}{\xspace\ensuremath{\mathbb{R}}\xspace}
|
||||
\newcommand{\ZZ}{\xspace\ensuremath{\mathbb{Z}}\xspace}
|
||||
\newcommand{\CC}{\xspace\ensuremath{\mathbb{C}}\xspace}
|
||||
\newcommand{\QQ}{\xspace\ensuremath{\mathbb{Q}}\xspace}
|
56
main.tex
56
main.tex
@ -1,26 +1,66 @@
|
||||
\documentclass[a4paper]{book}
|
||||
\documentclass[a4paper, 11pt]{memoir}
|
||||
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage[french]{babel}
|
||||
\usepackage[utf8x]{inputenc}
|
||||
\usepackage[french,english]{babel}
|
||||
%\usepackage[UKenglish]{babel}
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage{libertine}
|
||||
|
||||
\usepackage{fancyhdr}
|
||||
\pagestyle{fancy}
|
||||
|
||||
\usepackage[pagebackref]{hyperref}
|
||||
\renewcommand*{\backref}[1]{}
|
||||
\renewcommand*{\backrefalt}[4]{\small Citations: \S{} #4}
|
||||
\hypersetup{colorlinks=true, linkcolor=black!50!blue, citecolor=black!50!green, breaklinks=true}
|
||||
|
||||
\usepackage{amsmath, amssymb, mathrsfs}
|
||||
\usepackage{amsthm}
|
||||
|
||||
\usepackage{pdfpages}
|
||||
\newtheorem{theorem}{Theorem}
|
||||
\newtheorem{lemma}{Lemma}
|
||||
\theoremstyle{definition}
|
||||
\newtheorem{definition}{Definition}
|
||||
|
||||
\title{}
|
||||
\author{}
|
||||
\date{}
|
||||
\usepackage{pdfpages}
|
||||
\usepackage{xspace}
|
||||
|
||||
\input macros
|
||||
|
||||
\title{Cryptographie protégeant la vie privée avec des fonctionnalité avancées}
|
||||
\author{Fabrice Mouhartem}
|
||||
\date{\today}
|
||||
|
||||
\begin{document}
|
||||
\pagenumbering{roman}
|
||||
\includepdf{garde.pdf}
|
||||
|
||||
\pagestyle{empty}
|
||||
|
||||
%%%%%%%%%%%%%
|
||||
% Décidaces %
|
||||
%%%%%%%%%%%%%
|
||||
\cleardoublepage
|
||||
\vspace*{\stretch{1}}
|
||||
\begin{flushright}
|
||||
À \ldots
|
||||
\end{flushright}
|
||||
\vspace*{\stretch{2}}
|
||||
|
||||
\input acknowledgements
|
||||
|
||||
\input abstract
|
||||
|
||||
\tableofcontents
|
||||
\addcontentsline{toc}{chapter}{Contents}
|
||||
|
||||
\input chap-introduction
|
||||
|
||||
\part{Background and definitions}
|
||||
\input chap-lattices
|
||||
|
||||
\input chap-pairings
|
||||
|
||||
\bibliographystyle{alpha}
|
||||
\bibliography{these.bib}
|
||||
\end{document}
|
||||
% vim: spl=en
|
||||
|
Loading…
Reference in New Issue
Block a user