Structure: move chapters definition to main.tex

This commit is contained in:
Fabrice Mouhartem 2018-04-13 15:49:21 +02:00
parent af4c01bc74
commit 55a8061574
11 changed files with 35 additions and 31 deletions

View File

@ -1,2 +0,0 @@
\chapter{Lattice-Based Group Encryption}
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Chiffrement de groupe à base de réseaux euclidiens}

View File

@ -1,3 +0,0 @@
\chapter{Lattice-Based Dynamic Group Signatures}
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Signatures de groupe dynamique à base de réseaux euclidiens}
\label{ch:gs-lwe}

View File

@ -1,6 +1,3 @@
\chapter{Dynamic Group Signatures} \label{ch:gs-background}
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Signatures de groupe dynamique}
In this Part, we will present two constructions for dynamic group signatures.
The construction that will be explained in \cref{ch:sigmasig} is an adaptation of the Libert, Peters and Yung short group signature in the standard model from classical pairing assumptions~\cite{LPY15} into the random oracle model to gain efficiency, while keeping the assumptions simple.
This gives us a constant-size group signature scheme that is competitive with other construction based on less standard assumptions.

View File

@ -1,2 +0,0 @@
\chapter{Lattice-Based Oblivious Transfer with Access Control} \label{ch:ac-ot}
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Transfert inconscient adaptatif avec contrôle d'accès à base de réseaux euclidiens}

View File

@ -1,6 +1,3 @@
\chapter{Zero-Knowledge Arguments}
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Arguments à divulgation nulle de connaissance}
A \textit{Zero-Knowledge proof}~\cite{GMR85} (or \textbf{ZK proofs}) is an \textit{interactive proof} between a prover and a verifier at the end of which the verifier should be convinced of the truth of a statement (within some probability, called \emph{soundness error}), while the prover is guaranteed that the verifier learns nothing more that the authenticity of the statement.
One of the early applications of \ZK proofs in cryptography is for identification systems~\cite{FS86}.

View File

@ -1,3 +0,0 @@
\chapter*{Conclusion}
\addcontentsline{toc}{chapter}{Conclusion}
\addcontentsline{tof}{chapter}{Conclusion}

View File

@ -1,6 +1,3 @@
\chapter{Security Proofs in Cryptography} \label{ch:proofs}
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Les preuves de sécurité en cryptographie}
Provable security is a subfield of cryptography where constructions are proven secure with regards to a security model.
To illustrate this notion, let us take the example of public-key encryption schemes.
This primitive consists in three algorithms:~\textit{key generation}, \textit{encryption} and \textit{decryption}.

View File

@ -1,7 +1,3 @@
\chapter*[Publication List]{List of Publications}
\addcontentsline{toc}{chapter}{List of publications}
\addcontentsline{tof}{chapter}{Liste des publications}
\section*{International Conferences}
\begin{description}
\item[\cite{LMPY16}] Benoît Libert, \textbf{Fabrice Mouhartem}, Thomas Peters, Moti Yung.

View File

@ -1,7 +1,3 @@
\chapter{Pairing-Based Dynamic Group Signatures}
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Signatures de groupe dynamique à base de couplages}
\label{ch:sigmasig}
%--------------------------------------------------
In this chapter, we aim at lifting the \textit{signature with efficient protocols} from~\cite{LPY15} into the random oracle model in order to get an efficient construction.
Signatures with efficient protocols in the Camenish and Lysyanskaya fashion~\cite{CL04} are digital signatures that comes with companion zero-knowledge proofs that allows a signature holder to prove

View File

@ -1,7 +1,3 @@
\chapter{Underlying Structures}
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Structures sous-jacentes}
\label{ch:structures}
In the previous chapter, we saw that theoretical cryptography has to rely on \emph{computational hardness assumptions}.
Beside \emph{information theory-base cryptography}, most hardness assumptions are built on top of algebraic structures.
For instance the discrete logarithm assumption (Definition~\ref{de:DLP}) is based on a cyclic group structure.

View File

@ -104,10 +104,20 @@
\addcontentsline{tof}{part}{\protect\numberline{\thepart} Préliminaires}
}
\chapter{Security Proofs in Cryptography} \label{ch:proofs}
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Les preuves de sécurité en cryptographie}
\input chap-proofs
\chapter{Underlying Structures}
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Structures sous-jacentes}
\label{ch:structures}
\input chap-structures
\chapter{Zero-Knowledge Arguments}
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Arguments à divulgation nulle de connaissance}
\input chap-ZK
\cleardoublepage
@ -117,10 +127,21 @@
\addcontentsline{tof}{part}{\protect\numberline{\thepart} Signatures de groupe et accréditations anonymes}
}
\chapter{Dynamic Group Signatures} \label{ch:gs-background}
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Signatures de groupe dynamique}
\input chap-GS-background
\chapter{Pairing-Based Dynamic Group Signatures}
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Signatures de groupe dynamique à base de couplages}
\label{ch:sigmasig}
\input chap-sigmasig
\chapter{Lattice-Based Dynamic Group Signatures}
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Signatures de groupe dynamique à base de réseaux euclidiens}
\label{ch:gs-lwe}
\input chap-GS-LWE
\cleardoublepage
@ -130,12 +151,26 @@
\addcontentsline{tof}{part}{\protect\numberline{\thepart} Chiffrement de groupe et transfert inconscient adaptatif}
}
\chapter{Lattice-Based Group Encryption}
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Chiffrement de groupe à base de réseaux euclidiens}
\input chap-GE-LWE
\chapter{Lattice-Based Oblivious Transfer with Access Control} \label{ch:ac-ot}
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Transfert inconscient adaptatif avec contrôle d'accès à base de réseaux euclidiens}
\input chap-OT-LWE
\chapter*{Conclusion}
\addcontentsline{toc}{chapter}{Conclusion}
\addcontentsline{tof}{chapter}{Conclusion}
\input chap-conclusion
\chapter*[Publication List]{List of Publications}
\addcontentsline{toc}{chapter}{List of publications}
\addcontentsline{tof}{chapter}{Liste des publications}
\input chap-publications
\bibliographystyle{alphaabbr}