Structure: move chapters definition to main.tex
This commit is contained in:
parent
af4c01bc74
commit
55a8061574
@ -1,2 +0,0 @@
|
||||
\chapter{Lattice-Based Group Encryption}
|
||||
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Chiffrement de groupe à base de réseaux euclidiens}
|
@ -1,3 +0,0 @@
|
||||
\chapter{Lattice-Based Dynamic Group Signatures}
|
||||
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Signatures de groupe dynamique à base de réseaux euclidiens}
|
||||
\label{ch:gs-lwe}
|
@ -1,6 +1,3 @@
|
||||
\chapter{Dynamic Group Signatures} \label{ch:gs-background}
|
||||
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Signatures de groupe dynamique}
|
||||
|
||||
In this Part, we will present two constructions for dynamic group signatures.
|
||||
The construction that will be explained in \cref{ch:sigmasig} is an adaptation of the Libert, Peters and Yung short group signature in the standard model from classical pairing assumptions~\cite{LPY15} into the random oracle model to gain efficiency, while keeping the assumptions simple.
|
||||
This gives us a constant-size group signature scheme that is competitive with other construction based on less standard assumptions.
|
||||
|
@ -1,2 +0,0 @@
|
||||
\chapter{Lattice-Based Oblivious Transfer with Access Control} \label{ch:ac-ot}
|
||||
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Transfert inconscient adaptatif avec contrôle d'accès à base de réseaux euclidiens}
|
@ -1,6 +1,3 @@
|
||||
\chapter{Zero-Knowledge Arguments}
|
||||
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Arguments à divulgation nulle de connaissance}
|
||||
|
||||
A \textit{Zero-Knowledge proof}~\cite{GMR85} (or \textbf{ZK proofs}) is an \textit{interactive proof} between a prover and a verifier at the end of which the verifier should be convinced of the truth of a statement (within some probability, called \emph{soundness error}), while the prover is guaranteed that the verifier learns nothing more that the authenticity of the statement.
|
||||
|
||||
One of the early applications of \ZK proofs in cryptography is for identification systems~\cite{FS86}.
|
||||
|
@ -1,3 +0,0 @@
|
||||
\chapter*{Conclusion}
|
||||
\addcontentsline{toc}{chapter}{Conclusion}
|
||||
\addcontentsline{tof}{chapter}{Conclusion}
|
@ -1,6 +1,3 @@
|
||||
\chapter{Security Proofs in Cryptography} \label{ch:proofs}
|
||||
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Les preuves de sécurité en cryptographie}
|
||||
|
||||
Provable security is a subfield of cryptography where constructions are proven secure with regards to a security model.
|
||||
To illustrate this notion, let us take the example of public-key encryption schemes.
|
||||
This primitive consists in three algorithms:~\textit{key generation}, \textit{encryption} and \textit{decryption}.
|
||||
|
@ -1,7 +1,3 @@
|
||||
\chapter*[Publication List]{List of Publications}
|
||||
\addcontentsline{toc}{chapter}{List of publications}
|
||||
\addcontentsline{tof}{chapter}{Liste des publications}
|
||||
|
||||
\section*{International Conferences}
|
||||
\begin{description}
|
||||
\item[\cite{LMPY16}] Benoît Libert, \textbf{Fabrice Mouhartem}, Thomas Peters, Moti Yung.
|
||||
|
@ -1,7 +1,3 @@
|
||||
\chapter{Pairing-Based Dynamic Group Signatures}
|
||||
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Signatures de groupe dynamique à base de couplages}
|
||||
\label{ch:sigmasig}
|
||||
|
||||
%--------------------------------------------------
|
||||
In this chapter, we aim at lifting the \textit{signature with efficient protocols} from~\cite{LPY15} into the random oracle model in order to get an efficient construction.
|
||||
Signatures with efficient protocols in the Camenish and Lysyanskaya fashion~\cite{CL04} are digital signatures that comes with companion zero-knowledge proofs that allows a signature holder to prove
|
||||
|
@ -1,7 +1,3 @@
|
||||
\chapter{Underlying Structures}
|
||||
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Structures sous-jacentes}
|
||||
\label{ch:structures}
|
||||
|
||||
In the previous chapter, we saw that theoretical cryptography has to rely on \emph{computational hardness assumptions}.
|
||||
Beside \emph{information theory-base cryptography}, most hardness assumptions are built on top of algebraic structures.
|
||||
For instance the discrete logarithm assumption (Definition~\ref{de:DLP}) is based on a cyclic group structure.
|
||||
|
35
main.tex
35
main.tex
@ -104,10 +104,20 @@
|
||||
\addcontentsline{tof}{part}{\protect\numberline{\thepart} Préliminaires}
|
||||
}
|
||||
|
||||
\chapter{Security Proofs in Cryptography} \label{ch:proofs}
|
||||
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Les preuves de sécurité en cryptographie}
|
||||
|
||||
\input chap-proofs
|
||||
|
||||
\chapter{Underlying Structures}
|
||||
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Structures sous-jacentes}
|
||||
\label{ch:structures}
|
||||
|
||||
\input chap-structures
|
||||
|
||||
\chapter{Zero-Knowledge Arguments}
|
||||
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Arguments à divulgation nulle de connaissance}
|
||||
|
||||
\input chap-ZK
|
||||
|
||||
\cleardoublepage
|
||||
@ -117,10 +127,21 @@
|
||||
\addcontentsline{tof}{part}{\protect\numberline{\thepart} Signatures de groupe et accréditations anonymes}
|
||||
}
|
||||
|
||||
\chapter{Dynamic Group Signatures} \label{ch:gs-background}
|
||||
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Signatures de groupe dynamique}
|
||||
|
||||
\input chap-GS-background
|
||||
|
||||
\chapter{Pairing-Based Dynamic Group Signatures}
|
||||
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Signatures de groupe dynamique à base de couplages}
|
||||
\label{ch:sigmasig}
|
||||
|
||||
\input chap-sigmasig
|
||||
|
||||
\chapter{Lattice-Based Dynamic Group Signatures}
|
||||
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Signatures de groupe dynamique à base de réseaux euclidiens}
|
||||
\label{ch:gs-lwe}
|
||||
|
||||
\input chap-GS-LWE
|
||||
|
||||
\cleardoublepage
|
||||
@ -130,12 +151,26 @@
|
||||
\addcontentsline{tof}{part}{\protect\numberline{\thepart} Chiffrement de groupe et transfert inconscient adaptatif}
|
||||
}
|
||||
|
||||
\chapter{Lattice-Based Group Encryption}
|
||||
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Chiffrement de groupe à base de réseaux euclidiens}
|
||||
|
||||
\input chap-GE-LWE
|
||||
|
||||
\chapter{Lattice-Based Oblivious Transfer with Access Control} \label{ch:ac-ot}
|
||||
\addcontentsline{tof}{chapter}{\protect\numberline{\thechapter} Transfert inconscient adaptatif avec contrôle d'accès à base de réseaux euclidiens}
|
||||
|
||||
\input chap-OT-LWE
|
||||
|
||||
\chapter*{Conclusion}
|
||||
\addcontentsline{toc}{chapter}{Conclusion}
|
||||
\addcontentsline{tof}{chapter}{Conclusion}
|
||||
|
||||
\input chap-conclusion
|
||||
|
||||
\chapter*[Publication List]{List of Publications}
|
||||
\addcontentsline{toc}{chapter}{List of publications}
|
||||
\addcontentsline{tof}{chapter}{Liste des publications}
|
||||
|
||||
\input chap-publications
|
||||
|
||||
\bibliographystyle{alphaabbr}
|
||||
|
Loading…
Reference in New Issue
Block a user