Cleaning the code
This commit is contained in:
@ -160,13 +160,11 @@ The proof of the theorem relies on standard simulation and extraction techniques
|
||||
We now will prove that the protocol is a statistical zero-knowledge argument of knowledge for the relation $\mathrm{R_{abstract}}$ and is given below.
|
||||
|
||||
\smallskip
|
||||
\noindent
|
||||
\scbf{Zero-Knowledge Property. } We construct a \textsf{PPT} simulator $\mathsf{SIM}$ interacting with a (possibly dishonest) verifier $\widehat{\mathcal{V}}$, such that, given only the public input, $\mathsf{SIM}$ outputs with probability negligibly close to $2/3$ a simulated transcript that is statistically close to the one produced by the honest prover in the real interaction.
|
||||
|
||||
The simulator first chooses a random $\overline{Ch} \in \{1,2,3\}$. This is a prediction of the challenge value that $\widehat{\mathcal{V}}$ will \emph{not} choose.
|
||||
\smallskip
|
||||
|
||||
\noindent
|
||||
\begin{description}
|
||||
\item[\textsf{Case} $\overline{Ch}=1$]: Using basic linear algebra over $\mathbb{Z}_q$, $\mathsf{SIM}$ computes a vector $\mathbf{w}' \in \mathbb{Z}_q^D$ such that $\mathbf{M}\cdot \mathbf{w}' = \mathbf{v} \bmod q.$
|
||||
Next, it samples $\mathbf{r} \hookleftarrow \U(\mathbb{Z}_q^D)$, $\pi \hookleftarrow \U(\mathcal{S})$, and randomnesses $\rho_1, \rho_2, \rho_3$ for $\mathsf{COM}$.
|
||||
@ -187,7 +185,6 @@ The proof of the theorem relies on standard simulation and extraction techniques
|
||||
|
||||
\smallskip
|
||||
|
||||
\noindent
|
||||
\item[\textsf{Case} $\overline{Ch}=2$:] $\mathsf{SIM}$ samples $\mathbf{w}' \hookleftarrow \U(\mathsf{VALID})$, $\mathbf{r} \hookleftarrow \U(\mathbb{Z}_q^D)$, $\pi \hookleftarrow \U(\mathcal{S})$, and randomnesses $\rho_1, \rho_2, \rho_3$ for $\mathsf{COM}$.
|
||||
|
||||
Then it sends the commitment $\mathrm{CMT}= \big(C'_1, C'_2, C'_3\big)$ to $\widehat{\mathcal{V}}$, where
|
||||
@ -207,7 +204,6 @@ The proof of the theorem relies on standard simulation and extraction techniques
|
||||
|
||||
\smallskip
|
||||
|
||||
\noindent
|
||||
\item[Case $\overline{Ch}=3$:] $\mathsf{SIM}$ samples $\mathbf{w}' \hookleftarrow \U(\mathsf{VALID})$, $\mathbf{r} \hookleftarrow \U(\mathbb{Z}_q^D)$, $\pi \hookleftarrow \U(\mathcal{S})$, and randomnesses $\rho_1, \rho_2, \rho_3$ for $\mathsf{COM}$.
|
||||
|
||||
Then it sends the commitment $\mathrm{CMT}= \big(C'_1, C'_2, C'_3\big)$ to $\widehat{\mathcal{V}}$, where
|
||||
@ -225,12 +221,10 @@ The proof of the theorem relies on standard simulation and extraction techniques
|
||||
\end{description}
|
||||
\smallskip
|
||||
|
||||
\noindent
|
||||
We observe that, in all the above cases, since $\mathsf{COM}$ is statistically hiding, the distribution of the commitment $\mathrm{CMT}$ and the distribution of the challenge~$Ch$ from~$\widehat{\mathcal{V}}$ are statistically close to those in the real interaction. Hence, the probability that the simulator outputs~$\bot$ is negligibly close to~$1/3$. Moreover, one can check that whenever the simulator does not halt, it will provide an accepted transcript, the distribution of which is statistically close to that of the prover in the real interaction. In other words, we have designed a simulator that can successfully emulate the honest prover with probability negligibly far from~$2/3$.
|
||||
|
||||
\medskip
|
||||
|
||||
\noindent
|
||||
\scbf{Argument of Knowledge.} Let us assume that
|
||||
\begin{gather*}
|
||||
\mathrm{RSP}_1 = (\mathbf{t}_x, \mathbf{t}_r, \rho_{2}^{(1)}, \rho_{3}^{(1)}), \qquad
|
||||
|
Reference in New Issue
Block a user