Cleaning the code

This commit is contained in:
2018-04-30 16:12:03 +02:00
parent 46e0240867
commit b295212aac
7 changed files with 145 additions and 67 deletions

View File

@ -160,13 +160,11 @@ The proof of the theorem relies on standard simulation and extraction techniques
We now will prove that the protocol is a statistical zero-knowledge argument of knowledge for the relation $\mathrm{R_{abstract}}$ and is given below.
\smallskip
\noindent
\scbf{Zero-Knowledge Property. } We construct a \textsf{PPT} simulator $\mathsf{SIM}$ interacting with a (possibly dishonest) verifier $\widehat{\mathcal{V}}$, such that, given only the public input, $\mathsf{SIM}$ outputs with probability negligibly close to $2/3$ a simulated transcript that is statistically close to the one produced by the honest prover in the real interaction.
The simulator first chooses a random $\overline{Ch} \in \{1,2,3\}$. This is a prediction of the challenge value that $\widehat{\mathcal{V}}$ will \emph{not} choose.
\smallskip
\noindent
\begin{description}
\item[\textsf{Case} $\overline{Ch}=1$]: Using basic linear algebra over $\mathbb{Z}_q$, $\mathsf{SIM}$ computes a vector $\mathbf{w}' \in \mathbb{Z}_q^D$ such that $\mathbf{M}\cdot \mathbf{w}' = \mathbf{v} \bmod q.$
Next, it samples $\mathbf{r} \hookleftarrow \U(\mathbb{Z}_q^D)$, $\pi \hookleftarrow \U(\mathcal{S})$, and randomnesses $\rho_1, \rho_2, \rho_3$ for $\mathsf{COM}$.
@ -187,7 +185,6 @@ The proof of the theorem relies on standard simulation and extraction techniques
\smallskip
\noindent
\item[\textsf{Case} $\overline{Ch}=2$:] $\mathsf{SIM}$ samples $\mathbf{w}' \hookleftarrow \U(\mathsf{VALID})$, $\mathbf{r} \hookleftarrow \U(\mathbb{Z}_q^D)$, $\pi \hookleftarrow \U(\mathcal{S})$, and randomnesses $\rho_1, \rho_2, \rho_3$ for $\mathsf{COM}$.
Then it sends the commitment $\mathrm{CMT}= \big(C'_1, C'_2, C'_3\big)$ to $\widehat{\mathcal{V}}$, where
@ -207,7 +204,6 @@ The proof of the theorem relies on standard simulation and extraction techniques
\smallskip
\noindent
\item[Case $\overline{Ch}=3$:] $\mathsf{SIM}$ samples $\mathbf{w}' \hookleftarrow \U(\mathsf{VALID})$, $\mathbf{r} \hookleftarrow \U(\mathbb{Z}_q^D)$, $\pi \hookleftarrow \U(\mathcal{S})$, and randomnesses $\rho_1, \rho_2, \rho_3$ for $\mathsf{COM}$.
Then it sends the commitment $\mathrm{CMT}= \big(C'_1, C'_2, C'_3\big)$ to $\widehat{\mathcal{V}}$, where
@ -225,12 +221,10 @@ The proof of the theorem relies on standard simulation and extraction techniques
\end{description}
\smallskip
\noindent
We observe that, in all the above cases, since $\mathsf{COM}$ is statistically hiding, the distribution of the commitment $\mathrm{CMT}$ and the distribution of the challenge~$Ch$ from~$\widehat{\mathcal{V}}$ are statistically close to those in the real interaction. Hence, the probability that the simulator outputs~$\bot$ is negligibly close to~$1/3$. Moreover, one can check that whenever the simulator does not halt, it will provide an accepted transcript, the distribution of which is statistically close to that of the prover in the real interaction. In other words, we have designed a simulator that can successfully emulate the honest prover with probability negligibly far from~$2/3$.
\medskip
\noindent
\scbf{Argument of Knowledge.} Let us assume that
\begin{gather*}
\mathrm{RSP}_1 = (\mathbf{t}_x, \mathbf{t}_r, \rho_{2}^{(1)}, \rho_{3}^{(1)}), \qquad