Add sigmasig
This commit is contained in:
@ -67,13 +67,13 @@ In order to define the $\SIVP$ problem and assumption, let us first define the s
|
||||
\begin{definition}[Successive minima] \label{de:lattice-lambda}
|
||||
For a lattice $\Lambda$ of dimension $n$, let us define for $i \in \{1,\ldots,n\}$ the $i$-th successive minimum as
|
||||
\[ \lambda_i(\Lambda) = \inf \bigl\{ r \mid \dim \left( \Span\left(\lambda \cap \mathcal B\left(\mathbf 0, r \right) \right) \right) \geq i \bigr\}, \]
|
||||
where $\mathcal B(\mathbf c, r)$ denotes the ball of radius $r$ centered in $\mathbf c$.
|
||||
where $\mathcal B(\mathbf{c}, r)$ denotes the ball of radius $r$ centered in $\mathbf{c}$.
|
||||
\end{definition}
|
||||
|
||||
This leads us to the $\SIVP$ problem, which is finding a set of sufficiently short linearly independent vectors given a lattice basis.
|
||||
|
||||
\begin{definition}[$\SIVP$] \label{de:sivp}
|
||||
For a dimension $n$ lattice described by a basis $\mathbf B \in \RR^{n \times m}$, and a parameter $\gamma > 0$, the shortest independent vectors problem is to find $n$ linearly independent vectors $v_1, \ldots, v_n$ such that $\| v_1 \| \leq \| v_2 \| \leq \ldots \leq \| v_n \|$ and $\|v_n\| \leq \gamma \cdot \lambda_n(\mathbf B)$.
|
||||
For a dimension $n$ lattice described by a basis $\mathbf{B} \in \RR^{n \times m}$, and a parameter $\gamma > 0$, the shortest independent vectors problem is to find $n$ linearly independent vectors $v_1, \ldots, v_n$ such that $\| v_1 \| \leq \| v_2 \| \leq \ldots \leq \| v_n \|$ and $\|v_n\| \leq \gamma \cdot \lambda_n(\mathbf{B})$.
|
||||
\end{definition}
|
||||
|
||||
As explained before, the hardness of this assumption for worst-case lattices implies the hardness of the following two assumptions in their average-case setting, which are illustrated in Figure~\ref{fig:lwe-sis}.
|
||||
@ -84,7 +84,7 @@ In other words, it means that no polynomial time algorithms can solve those prob
|
||||
Let~$m,q,\beta$ be functions of~$n \in \mathbb{N}$.
|
||||
The \textit{Short Integer Solution} problem $\SIS_{n,m,q,\beta}$ is, given~$\mathbf{A} \sample \U(\Zq^{n \times m})$, find~$\mathbf{x} \in \Lambda_q^{\perp}(\mathbf{A})$ with~$0 < \|\mathbf{x}\| \leq \beta$.
|
||||
|
||||
The \textit{Inhomogeneous Short Integer Solution}~$\ISIS_{n,m,q,\beta}$ problem is, given~$\mathbf{A} \sample \U(\Zq^{n \times m})$ and $\mathbf u \in \Zq^n$, find~$\mathbf{x} \in \Lambda_q^{\mathbf u}(\mathbf A)$ with~$0 < \| \mathbf x \| \leq \beta$.
|
||||
The \textit{Inhomogeneous Short Integer Solution}~$\ISIS_{n,m,q,\beta}$ problem is, given~$\mathbf{A} \sample \U(\Zq^{n \times m})$ and $\mathbf{u} \in \Zq^n$, find~$\mathbf{x} \in \Lambda_q^{\mathbf{u}}(\mathbf{A})$ with~$0 < \| \mathbf{x} \| \leq \beta$.
|
||||
\end{definition}
|
||||
|
||||
Evidences of the hardness of the $\SIS$ and $\ISIS$ assumptions are given by the following Lemma, which reduced these problems from $\SIVP$.
|
||||
@ -168,10 +168,10 @@ We also make use of an algorithm that extends a trapdoor for~$\mathbf{A} \in \ZZ
|
||||
In some of our security proofs, analogously to \cite{Boy10,BHJ+15} we also use a technique due to Agrawal, Boneh and Boyen~\cite{ABB10} that implements an all-but-one trapdoor mechanism (akin to the one of Boneh and Boyen \cite{BB04}) in the lattice setting.
|
||||
|
||||
\begin{lemma}[{\cite[Th.~19]{ABB10}}]\label{lem:sampler}
|
||||
There exists a $\ppt$ algorithm $\SampleR$ that takes as inputs matrices $\mathbf A, \mathbf C \in \ZZ_q^{n \times m}$, a low-norm matrix $\mathbf R \in \ZZ^{m \times m}$,
|
||||
a short basis $\mathbf{T_C} \in \ZZ^{m \times m}$ of $\Lambda_q^{\perp}(\mathbf{C})$, a vector $\mathbf u \in \ZZ_q^{n}$ and a rational $\sigma$ such that $\sigma \geq \|
|
||||
\widetilde{\mathbf{T_C}}\| \cdot \Omega(\sqrt{\log n})$, and outputs a short vector $\mathbf{b} \in \ZZ^{2m}$ such that $\left[ \begin{array}{c|c} \mathbf A ~ &~ \mathbf A
|
||||
\cdot \mathbf R + \mathbf C \end{array} \right]\cdot \mathbf b = \mathbf u \bmod q$ and with distribution statistically close to $D_{L,\sigma}$ where $L$ denotes the shifted
|
||||
lattice $\Lambda^\mathbf{u}_q \left( \left[ \begin{array}{c|c} \mathbf A ~&~ \mathbf A \cdot \mathbf R + \mathbf C \end{array} \right] \right)$.
|
||||
%$\{ \mathbf x \in \ZZ^{2 m} : \left[ \begin{array}{c|c} \mathbf A ~&~ \mathbf A \cdot \mathbf R + \mathbf C \end{array} \right] \cdot \mathbf x = \mathbf u \bmod q \}$.
|
||||
There exists a $\ppt$ algorithm $\SampleR$ that takes as inputs matrices $\mathbf{A}, \mathbf{C} \in \ZZ_q^{n \times m}$, a low-norm matrix $\mathbf{R} \in \ZZ^{m \times m}$,
|
||||
a short basis $\mathbf{T_C} \in \ZZ^{m \times m}$ of $\Lambda_q^{\perp}(\mathbf{C})$, a vector $\mathbf{u} \in \ZZ_q^{n}$ and a rational $\sigma$ such that $\sigma \geq \|
|
||||
\widetilde{\mathbf{T_C}}\| \cdot \Omega(\sqrt{\log n})$, and outputs a short vector $\mathbf{b} \in \ZZ^{2m}$ such that $\left[ \begin{array}{c|c} \mathbf{A} ~ &~ \mathbf{A}
|
||||
\cdot \mathbf{R} + \mathbf{C} \end{array} \right]\cdot \mathbf{b} = \mathbf{u} \bmod q$ and with distribution statistically close to $D_{L,\sigma}$ where $L$ denotes the shifted
|
||||
lattice $\Lambda^\mathbf{u}_q \left( \left[ \begin{array}{c|c} \mathbf{A} ~&~ \mathbf{A} \cdot \mathbf{R} + \mathbf{C} \end{array} \right] \right)$.
|
||||
%$\{ \mathbf{x} \in \ZZ^{2 m} : \left[ \begin{array}{c|c} \mathbf{A} ~&~ \mathbf{A} \cdot \mathbf{R} + \mathbf{C} \end{array} \right] \cdot \mathbf{x} = \mathbf{u} \bmod q \}$.
|
||||
\end{lemma}
|
||||
|
Reference in New Issue
Block a user