diff --git a/chap-GS-background.tex b/chap-GS-background.tex index ce184b5..a74117c 100644 --- a/chap-GS-background.tex +++ b/chap-GS-background.tex @@ -306,8 +306,7 @@ adversarially-controlled user. attacks} if, for any $\ppt$ adversary $\adv$ involved in Experiment~$\Exp{\textrm{mis-id}}{\adv}(\lambda)$ described in Figure~\ref{exp:mis-id}, we have: \[\advantage{\adv}{\mathrm{mis}\textrm{-}\mathrm{id}}(\lambda) \triangleq - \Proba{\,\Exp{\mathrm{mis}\textrm{-}\mathrm{id}}{\adv}(\lambda)=1} = - \negl[\lambda].\] + \Proba{\,\Exp{\mathrm{mis}\textrm{-}\mathrm{id}}{\adv}(\lambda)=1} \leq \negl[\lambda].\] \end{definition} @@ -364,7 +363,7 @@ The adversary eventually aims at framing an honest group member. % A dynamic group signature scheme is secure against \emph{framing attacks} if, for any $\ppt$ adversary $\adv$ involved in the experiment~$\Exp{\mathrm{fra}}{\adv}(\lambda)$ described Figure~\ref{exp:frame}), it holds that - \[ \advantage{\adv}{\mathrm{fra}}(\lambda)=\Proba{\Exp{\mathrm{fra}}{\adv}(\lambda)=1} \in \negl[\lambda]. \] + \[ \advantage{\adv}{\mathrm{fra}}(\lambda)=\Proba{\Exp{\mathrm{fra}}{\adv}(\lambda)=1} \leq \negl[\lambda]. \] % \end{definition} diff --git a/chap-OT-LWE.tex b/chap-OT-LWE.tex index 246e0b9..5344af4 100644 --- a/chap-OT-LWE.tex +++ b/chap-OT-LWE.tex @@ -103,7 +103,7 @@ The distribution of outputs of the environment in the different settings is deno \begin{definition} An AC-OT protocol is said to securely implement the functionality if for any real-world adversary $\adv$ and any real world environment $\mathcal E$, there exists an ideal-world simulator $\mathcal A'$ controlling the same parties in the ideal-world as $\adv$ does in the real-world, such that - \[ | \mathbf{Real}_{\mathcal E, \adv}(\lambda) - \mathbf{Ideal}_{\mathcal{E}, \adv}(\lambda) | = \negl(\lambda). \] + \[ | \mathbf{Real}_{\mathcal E, \adv}(\lambda) - \mathbf{Ideal}_{\mathcal{E}, \adv}(\lambda) | \leq \negl(\lambda). \] \end{definition} diff --git a/chap-proofs.tex b/chap-proofs.tex index 11d9a7e..dfb6298 100644 --- a/chap-proofs.tex +++ b/chap-proofs.tex @@ -123,7 +123,7 @@ an attack is successful if the probability that it succeed is noticeable. \index{Probability!Negligible} \index{Probability!Noticeable} \index{Probability!Overwhelming} Let $f : \NN \to [0,1]$ be a function. The function $f$ is said to be \emph{negligible} if $f(n) = n^{-\omega(1)}_{}$, and this is written $f(n) = \negl[n]$.\\ Non-negligible functions are also called \emph{noticeable} functions.\\ - Finally, if $f = 1- \negl[n]$, $f$ is said to be \emph{overwhelming}. + Finally, if $f = 1 - \negl[n]$, $f$ is said to be \emph{overwhelming}. \end{definition} Now, we have to define two more notions to be able to work on security proofs.