Corrections chap-structures
This commit is contained in:
parent
71e9abec4c
commit
efde1d281b
@ -1,16 +1,16 @@
|
|||||||
In the previous chapter, we saw that theoretical cryptography has to rely on \emph{computational hardness assumptions}.
|
In the previous chapter, we saw that cryptography has to rely on \emph{computational hardness assumptions}.
|
||||||
Beside \emph{information theory-base cryptography}, most hardness assumptions are built on top of algebraic structures.
|
Besides \emph{information-theoretic cryptography}, most hardness assumptions are built on top of suitable algebraic structures.
|
||||||
For instance the discrete logarithm assumption (Definition~\ref{de:DLP}) is based on a cyclic group structure.
|
For instance the discrete logarithm assumption (Definition~\ref{de:DLP}) is based on a cyclic group structure.
|
||||||
That is, in some groups it is assumed that computing the discrete logarithm is an intractable problem for any probabilistic polynomial time algorithms.
|
%That is, in some groups it is assumed that computing the discrete logarithm is an intractable problem for any probabilistic polynomial time algorithms.
|
||||||
|
|
||||||
The existence of these structures proves useful when it comes to design protocols.
|
The existence of such structures proves useful when it comes to designing protocols.
|
||||||
For that, constructions takes advantage of the mathematical properties of the structure to allow the functionality.
|
For this purpose, constructions take advantage of the mathematical properties of the structure to enable the functionality.
|
||||||
An example is the multiplicative homomorphism of the ElGamal cryptosystem which is possible using the structure of the underlying cyclic group $\GG$ on which the scheme is built upon.
|
An example is the multiplicative homomorphism of the ElGamal cryptosystem which is made possible by underlying cyclic group structure.
|
||||||
%Namely, an El Gamal encryption of a message $M$ under the public key $h = g^\alpha_{} \in \GG$ is a couple $(c_1^{}, c_2^{}) = (g^r_{}, M \cdot h^r_{}) \in \GG^2_{}$, which can be decrypted with the knowledge of the secret key $\alpha \in \Zp$: $M = c_2^{} \cdot c_1^{-\alpha}$.
|
%Namely, an El Gamal encryption of a message $M$ under the public key $h = g^\alpha_{} \in \GG$ is a couple $(c_1^{}, c_2^{}) = (g^r_{}, M \cdot h^r_{}) \in \GG^2_{}$, which can be decrypted with the knowledge of the secret key $\alpha \in \Zp$: $M = c_2^{} \cdot c_1^{-\alpha}$.
|
||||||
%Then, the cyclic group structure of $\GG$ leads to the ability to compute a valid ciphertext for $M \cdot M'$ given ciphertexts $(c_1^{}, c_2^{})$ and $(c'_1, c'_2)$ of $M$ and $M'_{}$ respectively.
|
%Then, the cyclic group structure of $\GG$ leads to the ability to compute a valid ciphertext for $M \cdot M'$ given ciphertexts $(c_1^{}, c_2^{})$ and $(c'_1, c'_2)$ of $M$ and $M'_{}$ respectively.
|
||||||
%The resulting ciphertext is $(c_1^{} \cdot c'_1, c_2^{} \cdot c'_2) = (g^{r \cdot r'_{}}, M \cdot M' \cdot h^{r \cdot r'_{}})$
|
%The resulting ciphertext is $(c_1^{} \cdot c'_1, c_2^{} \cdot c'_2) = (g^{r \cdot r'_{}}, M \cdot M' \cdot h^{r \cdot r'_{}})$
|
||||||
|
|
||||||
In this chapter, we describe the different structures on which the cryptography primitives we design in this thesis are based on, namely bilinear groups and lattices, as well as related hardness assumptions.
|
In this chapter, we describe the different structures on which the cryptographic primitives we design in this thesis are based on, namely bilinear groups and lattices, as well as related hardness assumptions.
|
||||||
|
|
||||||
\section{Pairing-Based Cryptography}
|
\section{Pairing-Based Cryptography}
|
||||||
\addcontentsline{tof}{section}{\protect\numberline{\thesection} Cryptographie à base de couplage}
|
\addcontentsline{tof}{section}{\protect\numberline{\thesection} Cryptographie à base de couplage}
|
||||||
|
@ -3,14 +3,14 @@
|
|||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
During the last decade, lattice-based cryptography has emerged as a promising candidate for post-quantum cryptography.
|
During the last decade, lattice-based cryptography has emerged as a promising candidate for post-quantum cryptography.
|
||||||
For example, on the first round of the NIST post-quantum competition, there are 28 out of 82 submissions from lattice-based cryptography~\cite{NIS17}.
|
For example, on the first round of the NIST post-quantum competition, there are 28 out of 82 submissions stem from lattice-based cryptography~\cite{NIS17}.
|
||||||
Lattice-based cryptography takes advantage of a simple mathematical structure, the so-called lattices, in order to provide beyond encryption and signature cryptography.
|
Lattice-based cryptography takes advantage of a simple mathematical structure in order to realize advanced functionalities, beyond encryption and signature schemes.
|
||||||
For instance, fully homomorphic encryption~\cite{Gen09,GSW13} are only possible in the lattice-based world for now.
|
For instance, fully homomorphic encryption~\cite{Gen09,GSW13} is only known to be possible in the lattice-based world for now.
|
||||||
|
|
||||||
In the context of provable security, lattice assumptions benefit from a worst-case to average-case reduction~\cite{Reg05,GPV08,MP12,AFG14}.
|
In the context of provable security, lattice assumptions benefit from a worst-case-to-average-case reduction~\cite{Reg05,GPV08,MP12,AFG14}.
|
||||||
Concurrently, worst-case lattice problems have been extensively analyzed in the last decade~\cite{ADS15,ADRS15,HK17}, both classically and quantumly.
|
Concurrently, worst-case lattice problems have been extensively analyzed in the last decade~\cite{ADS15,ADRS15,HK17}, both classically and quantumly.
|
||||||
|
|
||||||
This gives us a good confidence in the lattice-based assumptions (given the \emph{caveats} of Chapter~\ref{ch:proofs}) such as Learning with Errors ($\LWE$) and Short Integer Solutions ($\SIS$) that are defined in Section~\ref{sse:lattice-problems}. The rest of this section will describe some useful algorithms that relies on \emph{lattice trapdoors}.
|
This gives us a good confidence in lattice assumptions (given the \emph{caveats} of Chapter~\ref{ch:proofs}) such as Learning-with-Errors ($\LWE$) and Short Integer Solutions ($\SIS$) which are defined in Section~\ref{sse:lattice-problems}. The rest of this section will describe some useful tools that rely on \emph{lattice trapdoors}.
|
||||||
|
|
||||||
\subsection{Lattices and Hard Lattice Problems}
|
\subsection{Lattices and Hard Lattice Problems}
|
||||||
\label{sse:lattice-problems}
|
\label{sse:lattice-problems}
|
||||||
@ -23,7 +23,7 @@ This gives us a good confidence in the lattice-based assumptions (given the \emp
|
|||||||
\label{fig:lattice-basis}
|
\label{fig:lattice-basis}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
A (full-rank) lattice~$\Lambda$ is defined as the set of all integer linear combinations of some linearly independent basis vectors~$(\mathbf{b}_i^{})^{}_{1\leq i \leq n}$ belonging to some~$\RR^n_{}$.
|
A (full-rank) lattice~$\Lambda$ is defined as the set of all integer linear combinations of some linearly independent basis vectors~$(\mathbf{b}_i^{})^{}_{1\leq i \leq n}$ of~$\RR^n_{}$.
|
||||||
The integer~$n$ denotes the \emph{dimension} of the lattice.
|
The integer~$n$ denotes the \emph{dimension} of the lattice.
|
||||||
A lattice basis is not unique, as illustrated in Figure~\ref{fig:lattice-basis} with a dimension $2$ lattice.
|
A lattice basis is not unique, as illustrated in Figure~\ref{fig:lattice-basis} with a dimension $2$ lattice.
|
||||||
In the following, we work with $q$-ary lattices, for some prime number $q$, defined as follows.
|
In the following, we work with $q$-ary lattices, for some prime number $q$, defined as follows.
|
||||||
@ -36,7 +36,7 @@ In the following, we work with $q$-ary lattices, for some prime number $q$, defi
|
|||||||
\Lambda_q^{\mathbf{u}} (\mathbf{A}) & \triangleq \{\mathbf{e} \in \ZZ^m_{} \mid \mathbf{A} \cdot \mathbf{e} = \mathbf{u} \bmod q \}.
|
\Lambda_q^{\mathbf{u}} (\mathbf{A}) & \triangleq \{\mathbf{e} \in \ZZ^m_{} \mid \mathbf{A} \cdot \mathbf{e} = \mathbf{u} \bmod q \}.
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
For any lattice point $\mathbf{t} \in \Lambda_q^{\mathbf{u}} (\mathbf{A})$, it holds that $\Lambda_q^{\mathbf{u}}(\mathbf{A})=\Lambda_q^{\perp}(\mathbf{A}) + \mathbf{t}$. Meaning that $\Lambda_q^{\mathbf{u}} (\mathbf{A}) $
|
For any lattice point $\mathbf{t} \in \Lambda_q^{\mathbf{u}} (\mathbf{A})$, it holds that $\Lambda_q^{\mathbf{u}}(\mathbf{A})=\Lambda_q^{\perp}(\mathbf{A}) + \mathbf{t}$, meaning that $\Lambda_q^{\mathbf{u}} (\mathbf{A}) $
|
||||||
is a shift of $\Lambda_q^{\perp} (\mathbf{A})$.
|
is a shift of $\Lambda_q^{\perp} (\mathbf{A})$.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
@ -56,38 +56,38 @@ $\Pr_{\mathbf{b} \sample D_{\Lambda,\sigma}} \left[ \|\mathbf{b}\| \leq \sigma \
|
|||||||
|
|
||||||
In order to work with lattices in cryptography, hard lattice problems have to be defined~\cite{Ajt96}.
|
In order to work with lattices in cryptography, hard lattice problems have to be defined~\cite{Ajt96}.
|
||||||
In the following we state the \textit{Shortest Independent Vectors Problem}~($\SIVP$).
|
In the following we state the \textit{Shortest Independent Vectors Problem}~($\SIVP$).
|
||||||
This problem reduces to the \textit{Learning With Errors}~($\LWE$) problems and the Short Integer Solution~($\SIS$) problem as explained later in \cref{le:sis-hard} and~\ref{le:lwe-hard}.
|
This problem reduces to the \textit{Learning-with-Errors}~($\LWE$) problems and the Short Integer Solution~($\SIS$) problem as explained later in \cref{le:sis-hard} and~\ref{le:lwe-hard}.
|
||||||
These links are important as those are ``worst-case to average-case'' reductions.
|
These links are important as those are ``worst-case-to-average-case'' reductions.
|
||||||
|
|
||||||
In other words, the $\SIVP$ assumption by itself is not very handy to manipulate in order to construct new cryptographic designs.
|
By itself, the $\SIVP$ assumption is not very handy in order to construct new cryptographic designs.
|
||||||
On the other hand, the $\LWE$ and $\SIS$ assumptions --\,which are ``average-case'' assumptions\,-- are more suitable to design cryptographic schemes.
|
On the other hand, the $\LWE$ and $\SIS$ assumptions --\,which are ``average-case'' assumptions\,-- are more suitable to design cryptographic schemes.
|
||||||
|
|
||||||
In order to define the $\SIVP$ problem and assumption, let us first define the successive minima of a lattice, a generalization of the minimum of a lattice (the length of a shortest non-zero vector in a lattice).
|
In order to define the $\SIVP$ problem and assumption, let us first define the successive minima of a lattice, a generalization of the minimum of a lattice (i.e., the length of a shortest non-zero vector in a lattice).
|
||||||
|
|
||||||
\begin{definition}[Successive minima] \label{de:lattice-lambda}
|
\begin{definition}[Successive minima] \label{de:lattice-lambda}
|
||||||
For a lattice $\Lambda$ of dimension $n$, let us define for $i \in \{1,\ldots,n\}$ the $i$-th successive minimum as
|
For a lattice $\Lambda$ of dimension $n$, let us define for each~$i \in \{1,\ldots,n\}$ the $i$-th successive minimum as
|
||||||
\[ \lambda_i(\Lambda) = \inf \bigl\{ r \mid \dim \left( \Span\left(\lambda \cap \mathcal B\left(\mathbf{0}, r \right) \right) \right) \geq i \bigr\}, \]
|
\[ \lambda_i(\Lambda) = \inf \bigl\{ r \mid \dim \left( \Span\left(\Lambda \cap \mathcal B\left(\mathbf{0}, r \right) \right) \right) \geq i \bigr\}, \]
|
||||||
where $\mathcal B(\mathbf{c}, r)$ denotes the ball of radius $r$ centered in $\mathbf{c}$.
|
where $\mathcal B(\mathbf{c}, r)$ denotes the ball of radius $r$ centered in $\mathbf{c}$.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
This leads us to the $\SIVP$ problem, which is finding a set of sufficiently short linearly independent vectors given a lattice basis.
|
This leads us to the $\SIVP$ problem, which is to find a set of sufficiently short linearly independent vectors given a lattice basis.
|
||||||
|
|
||||||
\begin{definition}[$\SIVP$] \label{de:sivp}
|
\begin{definition}[$\SIVP$] \label{de:sivp}
|
||||||
For a dimension $n$ lattice described by a basis $\mathbf{B} \in \RR^{n \times m}$, and a parameter $\gamma > 0$, the shortest independent vectors problem is to find $n$ linearly independent vectors $v_1, \ldots, v_n$ such that $\| v_1 \| \leq \| v_2 \| \leq \ldots \leq \| v_n \|$ and $\|v_n\| \leq \gamma \cdot \lambda_n(\mathbf{B})$.
|
For a dimension-$n$ lattice described by a basis $\mathbf{B} \in \RR^{n \times m}$, and a parameter $\gamma > 0$, the shortest independent vectors problem is to find $n$ linearly independent vectors $v_1, \ldots, v_n$ such that $\| v_1 \| \leq \| v_2 \| \leq \ldots \leq \| v_n \|$ and $\|v_n\| \leq \gamma \cdot \lambda_n(\mathbf{B})$.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
As explained before, the hardness of this assumption for worst-case lattices implies the hardness of the following two assumptions in their average-case setting, which are illustrated in Figure~\ref{fig:lwe-sis}.
|
As explained before, the hardness of this assumption for worst-case lattices implies the hardness of the following two assumptions in their average-case setting, which are illustrated in Figure~\ref{fig:lwe-sis}.
|
||||||
In other words, it means that no polynomial time algorithms can solve those problems with non-negligible probability and non-negligible advantage given that $\SIVP$ is hard.
|
In particular, it means that no polynomial-time algorithm can solve those problems with non-negligible probability and non-negligible advantage given that $\SIVP$ is hard.
|
||||||
%As explained before, we will rely on the assumption that both algorithmic problems below are hard. Meaning that no (probabilistic) polynomial time algorithms can solve them with non-negligible probability and non-negligible advantage, respectively.
|
%As explained before, we will rely on the assumption that both algorithmic problems below are hard. Meaning that no (probabilistic) polynomial time algorithms can solve them with non-negligible probability and non-negligible advantage, respectively.
|
||||||
|
|
||||||
\begin{definition}[The $\SIS$ and $\ISIS$ problem] \label{de:sis} \index{Lattices!Short Integer Solution} \index{Lattices!Inhomogeneous \SIS}
|
\begin{definition}[The $\SIS$ and $\ISIS$ problem] \label{de:sis} \index{Lattices!Short Integer Solution} \index{Lattices!Inhomogeneous \SIS}
|
||||||
Let~$m,q,\beta$ be functions of~$n \in \mathbb{N}$.
|
Let~$m,q,\beta$ be functions of~$n \in \mathbb{N}$ and $\|\cdot\|$ be a norm (e.g., Euclidean norm $\|\cdot\|_2$ or infinite norm $\|\cdot\|_\infty$).
|
||||||
The \textit{Short Integer Solution} problem $\SIS_{n,m,q,\beta}$ is, given~$\mathbf{A} \sample \U(\Zq^{n \times m})$, find~$\mathbf{x} \in \Lambda_q^{\perp}(\mathbf{A})$ with~$0 < \|\mathbf{x}\| \leq \beta$.
|
The \textit{Short Integer Solution} problem $\SIS_{n,m,q,\beta}$ is, given~$\mathbf{A} \sample \U(\Zq^{n \times m})$, find~$\mathbf{x} \in \Lambda_q^{\perp}(\mathbf{A})$ with~$0 < \|\mathbf{x}\| \leq \beta$.
|
||||||
|
|
||||||
The \textit{Inhomogeneous Short Integer Solution}~$\ISIS_{n,m,q,\beta}$ problem is, given~$\mathbf{A} \sample \U(\Zq^{n \times m})$ and $\mathbf{u} \in \Zq^n$, find~$\mathbf{x} \in \Lambda_q^{\mathbf{u}}(\mathbf{A})$ with~$0 < \| \mathbf{x} \| \leq \beta$.
|
The \textit{Inhomogeneous Short Integer Solution}~$\ISIS_{n,m,q,\beta}$ problem is, given~$\mathbf{A} \sample \U(\Zq^{n \times m})$ and $\mathbf{u} \in \Zq^n$, find~$\mathbf{x} \in \Lambda_q^{\mathbf{u}}(\mathbf{A})$ with~$0 < \| \mathbf{x} \| \leq \beta$.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
Evidences of the hardness of the $\SIS$ and $\ISIS$ assumptions are given by the following Lemma, which reduced these problems from $\SIVP$.
|
Evidence of the hardness of the $\SIS$ and $\ISIS$ assumptions is given by the following Lemma, which reduced these problems from $\SIVP$.
|
||||||
|
|
||||||
\begin{lemma}[{\cite[Se.~9]{GPV08}}] \label{le:sis-hard}
|
\begin{lemma}[{\cite[Se.~9]{GPV08}}] \label{le:sis-hard}
|
||||||
If~$q \geq \sqrt{n} \beta$ and~$m,\beta \leq \mathsf{poly}(n)$, then $\SIS_{n,m,q,\beta}$ and $\ISIS_{n,m,q,\beta}$ problems are both at least as hard as
|
If~$q \geq \sqrt{n} \beta$ and~$m,\beta \leq \mathsf{poly}(n)$, then $\SIS_{n,m,q,\beta}$ and $\ISIS_{n,m,q,\beta}$ problems are both at least as hard as
|
||||||
@ -96,8 +96,8 @@ Evidences of the hardness of the $\SIS$ and $\ISIS$ assumptions are given by the
|
|||||||
|
|
||||||
\begin{definition}[The $\LWE$ problem] \label{de:lwe} \index{Lattices!Learning With Errors}
|
\begin{definition}[The $\LWE$ problem] \label{de:lwe} \index{Lattices!Learning With Errors}
|
||||||
Let $n,m \geq 1$, $q \geq 2$, and let $\chi$ be a probability distribution on~$\mathbb{Z}$.
|
Let $n,m \geq 1$, $q \geq 2$, and let $\chi$ be a probability distribution on~$\mathbb{Z}$.
|
||||||
For $\mathbf{s} \in \mathbb{Z}_q^n$, let $A_{\mathbf{s}, \chi}$ be the distribution obtained by sampling $\mathbf{a} \hookleftarrow \U(\mathbb{Z}_q^n)$ and $e \hookleftarrow \chi$, and outputting $(\mathbf{a}, \mathbf{a}^T\cdot\mathbf{s} + e) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$.
|
For a fixed $\mathbf{s} \in \mathbb{Z}_q^n$, let $A_{\mathbf{s}, \chi}$ be the distribution obtained by sampling $\mathbf{a} \hookleftarrow \U(\mathbb{Z}_q^n)$ and $e \hookleftarrow \chi$, and outputting $(\mathbf{a}, \mathbf{a}^T\cdot\mathbf{s} + e) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$.
|
||||||
The Learning With Errors problem $\mathsf{LWE}_{n,q,\chi}$ asks to distinguish~$m$ samples chosen according to $\mathcal{A}_{\mathbf{s},\chi}$ (for $\mathbf{s} \hookleftarrow \U(\mathbb{Z}_q^n)$) and $m$ samples chosen according to $\U(\mathbb{Z}_q^n \times \mathbb{Z}_q)$.
|
The \emph{Learning-with-Errors} problem $\mathsf{LWE}_{n,q,\chi}$ asks to distinguish~$m$ samples chosen according to $\mathcal{A}_{\mathbf{s},\chi}$ (for $\mathbf{s} \hookleftarrow \U(\mathbb{Z}_q^n)$) and $m$ samples chosen according to $\U(\mathbb{Z}_q^n \times \mathbb{Z}_q)$.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
@ -107,7 +107,7 @@ Evidences of the hardness of the $\SIS$ and $\ISIS$ assumptions are given by the
|
|||||||
\label{fig:lwe-sis}
|
\label{fig:lwe-sis}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
The worst-case to average-case reduction for $\LWE$ is stated by the following Lemma.
|
The worst-case-to-average-case reduction for $\LWE$ is stated by the following Lemma.
|
||||||
|
|
||||||
\begin{lemma}[{\cite{Reg05,Pei09,BLP+13}}] \label{le:lwe-hard}
|
\begin{lemma}[{\cite{Reg05,Pei09,BLP+13}}] \label{le:lwe-hard}
|
||||||
If $q$ is a prime power, $B \geq \sqrt{n}\omega(\log n)$, $\gamma= \widetilde{\mathcal{O}}(nq/B)$, then there exists an efficient sampleable $B$-bounded distribution~$\chi$ ({i.e.}, $\chi$ outputs samples with norm at most $B$ with overwhelming probability) such that $\mathsf{LWE}_{n,q,\chi}$ is as least as hard as $\mathsf{SIVP}_{\gamma}$.
|
If $q$ is a prime power, $B \geq \sqrt{n}\omega(\log n)$, $\gamma= \widetilde{\mathcal{O}}(nq/B)$, then there exists an efficient sampleable $B$-bounded distribution~$\chi$ ({i.e.}, $\chi$ outputs samples with norm at most $B$ with overwhelming probability) such that $\mathsf{LWE}_{n,q,\chi}$ is as least as hard as $\mathsf{SIVP}_{\gamma}$.
|
||||||
@ -121,12 +121,13 @@ The worst-case to average-case reduction for $\LWE$ is stated by the following L
|
|||||||
\label{sse:lattice-trapdoors}
|
\label{sse:lattice-trapdoors}
|
||||||
\addcontentsline{tof}{subsection}{\protect\numberline{\thesubsection} Trappes d'un réseau euclidien}
|
\addcontentsline{tof}{subsection}{\protect\numberline{\thesubsection} Trappes d'un réseau euclidien}
|
||||||
|
|
||||||
In this section, we state the different algorithms that use ``\textit{lattice trapdoors}''.
|
In this section, we recall the specifications of different algorithms that use ``\textit{lattice trapdoors}''.
|
||||||
A trapdoor for lattice $\Lambda$ is a \textit{short} basis of this lattice.
|
A trapdoor for a lattice $\Lambda$ is a \textit{short} basis of this lattice.
|
||||||
The knowledge of such a basis allows to sample elements in $D_{\Lambda, \sigma}$ within some restrictions given in~\cref{le:GPV}.
|
The knowledge of such a basis allows sampling elements in $D_{\Lambda, \sigma}$ within some restrictions given in~\cref{le:GPV}.
|
||||||
The existence of this sampler permits to solve hard lattice problems such as $\SIS$, which is assumed to be intractable in polynomial time.
|
The existence of this sampler allows sampling short vectors which is believed to be infeasible without knowing such a short basis.
|
||||||
|
%permits to solve hard lattice problems such as $\SIS$, which is assumed to be intractable in polynomial time.
|
||||||
Indeed,~\cref{le:TrapGen} shows that it is possible to sample a (statistically close to) uniform matrix $\mathbf{A} \in \ZZ_q^{n \times m}$ along with a short basis for $\Lambda^\perp_{q}(\mathbf{A})$.
|
Indeed,~\cref{le:TrapGen} shows that it is possible to sample a (statistically close to) uniform matrix $\mathbf{A} \in \ZZ_q^{n \times m}$ along with a short basis for $\Lambda^\perp_{q}(\mathbf{A})$.
|
||||||
Thus, a vector sampled in $D_{\Lambda^\perp_{q}(\mathbf{A}), \sigma}$, which is short with overwhelming probabilities according to~\cref{le:small}, is a solution to $\SIS_{n,m,q,\sigma \sqrt{n}}$.
|
Thus, a vector sampled from $D_{\Lambda^\perp_{q}(\mathbf{A}), \sigma}$, which is short with overwhelming probabilities according to~\cref{le:small}, is a solution to $\SIS_{n,m,q,\sigma \sqrt{n}}$.
|
||||||
|
|
||||||
Gentry {\em et al.}~\cite{GPV08} showed that Gaussian distributions with lattice support can be sampled efficiently given a sufficiently short basis of the lattice.
|
Gentry {\em et al.}~\cite{GPV08} showed that Gaussian distributions with lattice support can be sampled efficiently given a sufficiently short basis of the lattice.
|
||||||
|
|
||||||
@ -134,13 +135,13 @@ Gentry {\em et al.}~\cite{GPV08} showed that Gaussian distributions with lattice
|
|||||||
|
|
||||||
\begin{lemma}[{\cite[Le.~2.3]{BLP+13}}]
|
\begin{lemma}[{\cite[Le.~2.3]{BLP+13}}]
|
||||||
\label{le:GPV}
|
\label{le:GPV}
|
||||||
There exists a $\ppt$ (probabilistic polynomial-time) algorithm $\GPVSample$ that takes as inputs a
|
There exists a $\ppt$ (probabilistic polynomial-time) algorithm $\GPVSample$ that inputs a
|
||||||
basis~$\mathbf{B}$ of a lattice~$\Lambda \subseteq \ZZ^n$ and a
|
basis~$\mathbf{B}$ of a lattice~$\Lambda \subseteq \ZZ^n$ and a
|
||||||
rational~$\sigma \geq \|\widetilde{\mathbf{B}}\| \cdot \Omega(\sqrt{\log n})$,
|
rational~$\sigma \geq \|\widetilde{\mathbf{B}}\| \cdot \Omega(\sqrt{\log n})$,
|
||||||
and outputs vectors~$\mathbf{b} \in \Lambda$ with distribution~$D_{\Lambda,\sigma}$.
|
and outputs vectors~$\mathbf{b} \in \Lambda$ with distribution~$D_{\Lambda,\sigma}$.
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
|
|
||||||
The following Lemma states that it is possible to efficiently compute a uniform~$\mathbf{A}$ along with a short basis of its orthogonal lattice $\Lambda^{\perp}_q(\mathbf{A})$.
|
The following Lemma states that it is possible to efficiently compute a statistically uniform~$\mathbf{A}$ along with a short basis of its orthogonal lattice $\Lambda^{\perp}_q(\mathbf{A})$.
|
||||||
|
|
||||||
%We
|
%We
|
||||||
%use an algorithm that jointly samples a uniform~$\mathbf{A}$ and a short
|
%use an algorithm that jointly samples a uniform~$\mathbf{A}$ and a short
|
||||||
@ -153,7 +154,7 @@ There exists a $\ppt$ algorithm $\TrapGen$ that takes as inputs $1^n$, $1^m$ and
|
|||||||
|
|
||||||
\noindent Lemma~\ref{le:TrapGen} is often combined with the sampler from Lemma~\ref{le:GPV}. Micciancio and Peikert~\cite{MP12} proposed a more efficient approach for this combined task, which is to be be preferred in practice but, for the sake of simplicity, schemes are presented using $\TrapGen$ and $\GPVSample$ in this thesis.
|
\noindent Lemma~\ref{le:TrapGen} is often combined with the sampler from Lemma~\ref{le:GPV}. Micciancio and Peikert~\cite{MP12} proposed a more efficient approach for this combined task, which is to be be preferred in practice but, for the sake of simplicity, schemes are presented using $\TrapGen$ and $\GPVSample$ in this thesis.
|
||||||
|
|
||||||
We also make use of an algorithm that extends a trapdoor for~$\mathbf{A} \in \ZZ_q^{n \times m}$ to a trapdoor of any~$\mathbf{B} \in \ZZ_q^{n \times m'}$ whose left~$n \times m$ submatrix is~$\mathbf{A}$.
|
We also make use of an algorithm that extends a trapdoor for~$\mathbf{A} \in \ZZ_q^{n \times m}$ to a trapdoor of any~$\mathbf{B} \in \ZZ_q^{n \times m'}$ for which a $m$-subset of its columns is $\mathbf{A}$. For the sake of simplicity we will consider the case where~$\mathbf{A}$ is the left~$n \times m$ submatrix of~$\mathbf{B}$.
|
||||||
|
|
||||||
\begin{lemma}[{\cite[Le.~3.2]{CHKP10}}]\label{lem:extbasis}
|
\begin{lemma}[{\cite[Le.~3.2]{CHKP10}}]\label{lem:extbasis}
|
||||||
There exists a $\ppt$ algorithm $\ExtBasis$ that takes as inputs a
|
There exists a $\ppt$ algorithm $\ExtBasis$ that takes as inputs a
|
||||||
@ -165,7 +166,7 @@ We also make use of an algorithm that extends a trapdoor for~$\mathbf{A} \in \ZZ
|
|||||||
\leq \|\widetilde{\mathbf{T}_{\mathbf{A}}}\|$.
|
\leq \|\widetilde{\mathbf{T}_{\mathbf{A}}}\|$.
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
|
|
||||||
In some of our security proofs, analogously to \cite{Boy10,BHJ+15} we also use a technique due to Agrawal, Boneh and Boyen~\cite{ABB10} that implements an all-but-one trapdoor mechanism (akin to the one of Boneh and Boyen \cite{BB04}) in the lattice setting.
|
In some of our security proofs, analogously to \cite{Boy10,BHJ+15}, we also use a technique due to Agrawal, Boneh and Boyen~\cite{ABB10} that implements an all-but-one trapdoor mechanism (akin to the one of Boneh and Boyen \cite{BB04}) in the lattice setting.
|
||||||
|
|
||||||
\begin{lemma}[{\cite[Th.~19]{ABB10}}]\label{lem:sampler}
|
\begin{lemma}[{\cite[Th.~19]{ABB10}}]\label{lem:sampler}
|
||||||
There exists a $\ppt$ algorithm $\SampleR$ that takes as inputs matrices $\mathbf{A}, \mathbf{C} \in \ZZ_q^{n \times m}$, a low-norm matrix $\mathbf{R} \in \ZZ^{m \times m}$,
|
There exists a $\ppt$ algorithm $\SampleR$ that takes as inputs matrices $\mathbf{A}, \mathbf{C} \in \ZZ_q^{n \times m}$, a low-norm matrix $\mathbf{R} \in \ZZ^{m \times m}$,
|
||||||
|
@ -2,13 +2,13 @@
|
|||||||
% \section{Pairing-Based Cryptography} %
|
% \section{Pairing-Based Cryptography} %
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
Pairing-based cryptography was introduced by Antoine Joux~\cite{Jou00} to generalize Diffie-Hellman key exchange to three users in one round.
|
Pairing-based cryptography was introduced by Sakai, Ohgishi and Kasahara~\cite{SOK00} to generalize Diffie-Hellman key exchange to three users in one round.
|
||||||
Since then, many constructions have been proposed for cryptographic constructions, such as identity-based encryption~\cite{BF01,Wat05} or group signature~\cite{BBS04}.
|
Since then, many constructions have been proposed for cryptographic constructions, such as identity-based encryption~\cite{BF01,Wat05} or group signatures~\cite{BBS04}.
|
||||||
Multiple constructions and parameter sets coexist for pairings.
|
Multiple constructions and parameter sets coexist for pairings.
|
||||||
Real-world implementation are based on elliptic curves~\cite{BN06, KSS08}, but recent advances in cryptanalysis makes it hard to evaluate the security level of pairing-based cryptography~\cite{KB16,MSS17,BD18}.
|
Real-world implementation are based on elliptic curves~\cite{BN06, KSS08}, but recent advances in cryptanalysis requires to reassess the security level of pairing-based cryptography~\cite{KB16,MSS17,BD18}.
|
||||||
|
|
||||||
In the following, we rely on the black-box definition of cryptographic pairings as bilinear maps, and on the assumed hardness of classical constant-size assumptions over pairings, namely $\SXDH$ and $\SDL$.
|
In the following, we adopt black-box definitions of cryptographic pairings as bilinear maps, and on the assumed hardness of classical constant-size assumptions over pairing-friendly groups, namely $\SXDH$ and $\SDL$.
|
||||||
The notations $1_{\GG}^{}$, $1_{\Gh}^{}$ and $1_{\GT}^{}$ denote the unit element in $\GG$, $\Gh$ and $\GT$ respectively.
|
The notations $1_{\GG}^{}$, $1_{\Gh}^{}$ and $1_{\GT}^{}$ denote the identity elements in $\GG$, $\Gh$ and $\GT$ respectively.
|
||||||
|
|
||||||
\begin{restatable}[Pairings~\cite{BSS05}]{definition}{defPairings} \label{de:pairings} \index{Pairings}
|
\begin{restatable}[Pairings~\cite{BSS05}]{definition}{defPairings} \label{de:pairings} \index{Pairings}
|
||||||
A pairing is a map $e: \GG \times \Gh \to \GT$ over cyclic groups of order $p$ that verifies the following properties for any $g \in \GG, \hat{g} \in \Gh$:
|
A pairing is a map $e: \GG \times \Gh \to \GT$ over cyclic groups of order $p$ that verifies the following properties for any $g \in \GG, \hat{g} \in \Gh$:
|
||||||
@ -19,14 +19,11 @@ The notations $1_{\GG}^{}$, $1_{\Gh}^{}$ and $1_{\GT}^{}$ denote the unit elemen
|
|||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{restatable}
|
\end{restatable}
|
||||||
|
|
||||||
For cryptographic purpose, pairings are usually defined over elliptic curves, hence $\GT$ is a multiplicative subgroup of the multiplicative group of a finite field.
|
For cryptographic purposes, pairings are usually defined over elliptic curves, hence $\GT$ is a multiplicative subgroup of the multiplicative group of a finite field.
|
||||||
|
|
||||||
The most standard assumptions over pairings are derived from the equivalent of the Diffie-Hellman assumptions from cyclic groups,
|
The most standard assumptions over pairings are derived from the equivalent of the Diffie-Hellman assumptions from cyclic groups,
|
||||||
described in \cref{de:DDH} and recalled here.
|
described in \cref{de:DDH}.
|
||||||
|
This hypothesis is used to defined the $\SXDH$ assumption~\cite{Sco02} as follows.
|
||||||
\defDDH*
|
|
||||||
|
|
||||||
This hypothesis, from which the Diffie-Hellman key exchange relies its security on, is then used to defined the $\SXDH$ assumption.
|
|
||||||
|
|
||||||
\begin{restatable}[{$\SXDH$~\cite[As.~1]{BGdMM05}}]{definition}{defSXDH} \index{Pairings!SXDH} \label{de:SXDH}
|
\begin{restatable}[{$\SXDH$~\cite[As.~1]{BGdMM05}}]{definition}{defSXDH} \index{Pairings!SXDH} \label{de:SXDH}
|
||||||
The \emph{Symmetric eXternal Diffie-Hellman} ($\SXDH$) assumption holds if the $\DDH$ assumption holds both in $\GG$ and $\Gh$.
|
The \emph{Symmetric eXternal Diffie-Hellman} ($\SXDH$) assumption holds if the $\DDH$ assumption holds both in $\GG$ and $\Gh$.
|
||||||
@ -34,13 +31,13 @@ This hypothesis, from which the Diffie-Hellman key exchange relies its security
|
|||||||
|
|
||||||
The advantages of the best $\ppt$ adversary against $\DDH$ in group $\GG$ and $\Gh$ are written $\advantage{\DDH}{\GG}$ and $\advantage{\DDH}{\Gh}$ respectively. Both of those quantities are assumed negligible under the $\SXDH$ assumption.
|
The advantages of the best $\ppt$ adversary against $\DDH$ in group $\GG$ and $\Gh$ are written $\advantage{\DDH}{\GG}$ and $\advantage{\DDH}{\Gh}$ respectively. Both of those quantities are assumed negligible under the $\SXDH$ assumption.
|
||||||
|
|
||||||
In \cref{ch:sigmasig}, the security of the group signature scheme relies on the $\SXDH$ assumption, which is a well-studied assumption.
|
In \cref{ch:sigmasig}, the security of our group signature scheme relies on the $\SXDH$ assumption, which is a well-studied assumption.
|
||||||
Moreover, this assumption is static, meaning that the size of the assumption is independent of any parameters, and is non-interactive, in the sense that it does not involve any oracle.
|
Moreover, this assumption is static, meaning that the size of the assumption is independent of the number of queries made py the adversary or any feature (e.g., the maximal number of users) of the system, and is non-interactive, in the sense that it does not involve any oracle.
|
||||||
|
|
||||||
This gives a stronger security guarantee for the security of schemes proven under this kind of assumptions.
|
This gives us stronger confidente in the security of schemes proven under this kind of assumptions.
|
||||||
For instance, Cheon gave an attack against $q$-Strong Diffie-Hellmann problem for large values of $q$~\cite{Che06} (which usually represents the number of adversarial queries).
|
For instance, Cheon gave an attack against the $q$-Strong Diffie-Hellmann problem for large values of $q$~\cite{Che06} (which usually represents the number of adversarial queries).
|
||||||
|
|
||||||
In the aforementioned chapter, we also rely on the following assumption, which generalizes the Discrete Logarithm problem to asymmetric groups.
|
In \cref{ch:sigmasig}, we also rely on the following assumption, which generalizes the Discrete Logarithm problem to asymmetric groups.
|
||||||
|
|
||||||
\begin{restatable}[$\SDL$]{definition}{defSDL}
|
\begin{restatable}[$\SDL$]{definition}{defSDL}
|
||||||
\label{de:SDL} \index{Pairings!SDL}
|
\label{de:SDL} \index{Pairings!SDL}
|
||||||
@ -49,4 +46,4 @@ In the aforementioned chapter, we also rely on the following assumption, which g
|
|||||||
where $a \sample \ZZ_p^{}$, computing $a \in \ZZ_p^{}$.
|
where $a \sample \ZZ_p^{}$, computing $a \in \ZZ_p^{}$.
|
||||||
\end{restatable}
|
\end{restatable}
|
||||||
|
|
||||||
This assumption is also static and non-interactive.
|
Like $\SXDH$, this assumption is also static (i.e., constant-size) and non-interactive.
|
||||||
|
Loading…
Reference in New Issue
Block a user