56 lines
5.1 KiB
TeX
56 lines
5.1 KiB
TeX
\chapter*[List of Symbols]{List of Symbols}
|
|
\addcontentsline{toc}{chapter}{List of Symbols}
|
|
\addcontentsline{tof}{chapter}{Liste des symboles et abréviations}
|
|
|
|
\begin{longtable}{ll}
|
|
\multicolumn{2}{l}{\scbf{General Notations}} \\
|
|
TM & Turing Machine \\
|
|
$\ppt$ & Probabilistic Polynomial Time \\
|
|
$\epsilon$ & empty word \\
|
|
$\mathbf{A}$ & bold uppercase letters represent matrices \\
|
|
$\mathbf{b}$ & bold lowercase letters represent column vectors \\
|
|
$\widetilde{\mathbf{A}}$ & Gram-Schmidt orthogonalization of matrix $\mathbf{A}$ \\
|
|
$\mathbf{A}^T_{}, \mathbf{u}^T_{}$ & the transpose of a matrix or a vector respectively \\
|
|
$\U(S)$ & If $S$ is a finite set, $\U(S)$ denotes the uniform distribution over $S$\\
|
|
$\Pr[E]$ & Probability that an event $E$ occurs \\
|
|
[1ex] \multicolumn{2}{l}{\scbf{Usual sets}} \\
|
|
$\QQ$ & the set of rational numbers \\
|
|
$\RR$ & the set of real numbers \\
|
|
$\ZZ$ & the set of relative integers \\
|
|
$\ZZ_q$ & the field $\ZZ_{/q\ZZ}$, with $q$ prime \\
|
|
$\FF_2$ & the field $\ZZ_{/2\ZZ}$ \\
|
|
$\mathbb{S}^d$ & the set of vectors of dimension $d$ in the set $\mathbb{S}$ \\
|
|
$\mathbb{S}^{n \times m}$ & the set of matrices with $n$ rows and $m$ columns in the set $\mathbb{S}$ \\
|
|
[1ex] \multicolumn{2}{l}{\scbf{Protocols}} \\
|
|
$\PKE$ & Public Key Encryption \\
|
|
$\ZK$ & Zero-Knowledge \\
|
|
$\ZKAoK$ & Zero-Knowledge Argument of Knowledge \\
|
|
$\NIZK$ & Non-Interactive Zero-Knowledge \\
|
|
$\QANIZK$ & Quasi-Adaptive Non-Interactive Zero-Knowledge \\
|
|
$\OT$ & Oblivious Transfer \\
|
|
[1ex] \multicolumn{2}{l}{\scbf{Security Notions}} \\
|
|
EU-CMA & Existentially Unforgeable under chosen-message attacks \\
|
|
EU-RMA & Existentially Unforgeable under random-message attacks \\
|
|
IND-CPA & Indistinguishable under chosen-plaintext attacks (passive adversary) \\
|
|
IND-CCA1 & Indistinguishable under non-adaptive active adversary\\
|
|
IND-CCA2 & Indistinguishable under adaptive active adversary\\
|
|
[1ex] \multicolumn{2}{l}{\scbf{Security Models}} \\
|
|
$\ROM$ & Random-Oracle Model \\
|
|
$\UC$ & Universal Composability \\
|
|
[1ex] \multicolumn{2}{l}{\scbf{Security Assumptions}} \\
|
|
[.5ex] \multicolumn{2}{l}{\quad\textbf{Lattices}} \\
|
|
$\SIS$ & Short Integer Solution \\
|
|
$\ISIS$ & Inhomogeneous Short Integer Solution \\
|
|
$\LWE$ & Learning with Errors \\
|
|
$\SIVP$ & Shortest Independent Vectors Problem \\
|
|
[.5ex] \multicolumn{2}{l}{\quad\textbf{Cyclic groups}} \\
|
|
$\DLP$ & Discrete Logarithm Problem \\
|
|
$\DDH$ & Decisional Diffie-Hellman \\
|
|
[.5ex] \multicolumn{2}{l}{\quad\textbf{Bilinear groups}} \\
|
|
$\SXDH$ & Symmetric eXternal Diffie-Hellman \\
|
|
$\SDL$ & Symmetric Discrete Logarithm \\
|
|
[1ex] \multicolumn{2}{l}{\scbf{Stern-like protocol}} \\
|
|
$\mathsf{B}^2_{\mathfrak m}$ & The set of $\bit$ vector of hamming weight $\mathfrak m$ \\
|
|
$\mathsf{B}^3_{\mathfrak m}$ & The set of $\nbit$ vectors with $\mathfrak m$ elements in $-1$, $0$ and $1$ \\
|
|
\end{longtable}
|