%That is, in some groups it is assumed that computing the discrete logarithm is an intractable problem for any probabilistic polynomial time algorithms.
%Namely, an El Gamal encryption of a message $M$ under the public key $h = g^\alpha_{} \in \GG$ is a couple $(c_1^{}, c_2^{}) = (g^r_{}, M \cdot h^r_{}) \in \GG^2_{}$, which can be decrypted with the knowledge of the secret key $\alpha \in \Zp$: $M = c_2^{} \cdot c_1^{-\alpha}$.
%Then, the cyclic group structure of $\GG$ leads to the ability to compute a valid ciphertext for $M \cdot M'$ given ciphertexts $(c_1^{}, c_2^{})$ and $(c'_1, c'_2)$ of $M$ and $M'_{}$ respectively.
In this chapter, we describe the different structures on which the cryptographic primitives we design in this thesis are based on, namely bilinear groups and lattices, as well as related hardness assumptions.