This commit is contained in:
Fabrice Mouhartem 2018-01-15 12:56:09 +01:00
parent 0e90e9f689
commit c0360880e6
14 changed files with 63 additions and 12 deletions

View File

@ -2,6 +2,7 @@
\chapter*{Résumé}
\addcontentsline{toc}{chapter}{Résumé}
\begin{comment}
\begin{otherlanguage}{french}
Dans cette thèse, nous étudions les constructions cryptographiques prouvées pour la protection de la vie privée.
Pour cela nous nous sommes intéressés aux preuves et arguments à divulgation nulles de connaissances et leurs applications.
@ -13,6 +14,7 @@
Finalement, ces travaux nous ont amené à la construction d'un schéma de transfert inconscient adaptatif avec contrôle d'accès à base de réseaux euclidiens.
Ces constructions à base de réseaux ont été rendues possibles par l'amélioration graduelle de l'expressivité du protocole de Stern.
\end{otherlanguage}
\end{comment}
\clearpage
\flushright

1
chap-GE-LWE.tex Normal file
View File

@ -0,0 +1 @@
\chapter{Lattice-Based Group Encryption}

1
chap-GS-LWE.tex Normal file
View File

@ -0,0 +1 @@
\chapter{Lattice-Based Dynamic Group Signatures}

1
chap-OT-LWE.tex Normal file
View File

@ -0,0 +1 @@
\chapter{Lattice-Based Oblivious Transfer with Access Control}

5
chap-ZK.tex Normal file
View File

@ -0,0 +1,5 @@
\chapter{Zero-Knowledge Arguments}
\section{Schnorr Proofs}
\section{Stern-like Proofs}

View File

@ -1 +1,2 @@
\chapter{Introduction}

View File

@ -1 +0,0 @@
\chapter{Pairing-based cryptography}

9
chap-proofs.tex Normal file
View File

@ -0,0 +1,9 @@
\chapter{Security Proofs in Cryptography}
\section{Security Reductions}
\section{Random-Oracle Model and Standard Model}

1
chap-sigmasig.tex Normal file
View File

@ -0,0 +1 @@
\chapter{Pairing-Based Dynamic Group Signatures}

7
chap-structures.tex Normal file
View File

@ -0,0 +1,7 @@
\chapter{Underlying Structures}
\section{Pairing-Based Cryptography}
\section{Lattice-Based Cryptography}
\input sec-lattices.tex

View File

@ -57,7 +57,7 @@ Soutenue publiquement le jj/mm/aaaa, par :\\
\rule[20pt]{\textwidth}{0.5pt}
\fontsize{25pt}{28pt}\selectfont
\textbf{Protocoles cryptographiques pour la protection de la vie privée à base de couplages et de réseaux euclidiens}
\textbf{Privacy-preserving cryptography from pairings and lattices}
\rule{\textwidth}{0.5pt}

View File

@ -14,9 +14,13 @@
\renewcommand*{\backref}[1]{}
\renewcommand*{\backrefalt}[4]{\small Citations: \S{} #4}
\hypersetup{colorlinks=true, linkcolor=black!50!blue, citecolor=black!50!green, breaklinks=true}
% numbering
\setsecnumdepth{subsection}
\maxtocdepth {subsection}
\usepackage{amsmath, amssymb, mathrsfs}
\usepackage{amsthm}
\usepackage{comment}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
@ -46,20 +50,36 @@
\end{flushright}
\vspace*{\stretch{2}}
\input acknowledgements
\input abstract
\input acknowledgements
\cleardoublepage
\tableofcontents
\mainmatter
\input chap-introduction
\part{Background and Definitions}
\input chap-lattices
\part{Background}
\input chap-proofs
\input chap-pairings
\input chap-structures
\input chap-ZK
\part{Group Signatures and Anonymous Credentials}
\input chap-sigmasig
\input chap-GS-LWE
\part{Group Encryption and Adaptive Oblivious Transfer}
\input chap-GE-LWE
\input chap-OT-LWE
\part*{Conclusion}
\bibliographystyle{alpha}
\bibliography{these.bib}

View File

@ -1,4 +1,8 @@
\chapter{Lattices}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \section{Lattice-Based Cryptography} %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Lattices and Hard Lattice Problems}
A (full-rank) lattice~$L$ is defined as the set of all integer linear
combinations of some linearly independent basis
@ -31,7 +35,9 @@ For any lattice~$L \subseteq
\leq \sqrt{n} \sigma] \geq 1-2^{-\Omega(n)}.$
\end{lemma}
\noindent As shown by Gentry {\em et al.}~\cite{GePeVa08}, Gaussian
\subsection{Lattice Trapdoors}
\noindent As shown by Gentry {\em et al.}~\cite{GPV08}, Gaussian
distributions with lattice support can be sampled efficiently
given a sufficiently short basis of the lattice.
@ -86,5 +92,3 @@ an all-but-one trapdoor mechanism (akin to the one of Boneh and Boyen \cite{BB04
lattice $\Lambda^\mathbf{u}_q \left( \left[ \begin{array}{c|c} \mathbf A ~&~ \mathbf A \cdot \mathbf R + \mathbf C \end{array} \right] \right)$.
%$\{ \mathbf x \in \ZZ^{2 m} : \left[ \begin{array}{c|c} \mathbf A ~&~ \mathbf A \cdot \mathbf R + \mathbf C \end{array} \right] \cdot \mathbf x = \mathbf u \bmod q \}$.
\end{lemma}

View File

@ -673,7 +673,7 @@ series = {LNCS},
timestamp = {2015.10.05}
}
@INPROCEEDINGS{GePeVa08,
@INPROCEEDINGS{GPV08,
author = {Gentry, C. and Peikert, C. and Vaikuntanathan, V.},
title = {Trapdoors for hard lattices and new cryptographic constructions},
booktitle = {{STOC} 2008},