Outline
This commit is contained in:
parent
0e90e9f689
commit
c0360880e6
@ -2,6 +2,7 @@
|
||||
\chapter*{Résumé}
|
||||
\addcontentsline{toc}{chapter}{Résumé}
|
||||
|
||||
\begin{comment}
|
||||
\begin{otherlanguage}{french}
|
||||
Dans cette thèse, nous étudions les constructions cryptographiques prouvées pour la protection de la vie privée.
|
||||
Pour cela nous nous sommes intéressés aux preuves et arguments à divulgation nulles de connaissances et leurs applications.
|
||||
@ -13,6 +14,7 @@
|
||||
Finalement, ces travaux nous ont amené à la construction d'un schéma de transfert inconscient adaptatif avec contrôle d'accès à base de réseaux euclidiens.
|
||||
Ces constructions à base de réseaux ont été rendues possibles par l'amélioration graduelle de l'expressivité du protocole de Stern.
|
||||
\end{otherlanguage}
|
||||
\end{comment}
|
||||
\clearpage
|
||||
|
||||
\flushright
|
||||
|
1
chap-GE-LWE.tex
Normal file
1
chap-GE-LWE.tex
Normal file
@ -0,0 +1 @@
|
||||
\chapter{Lattice-Based Group Encryption}
|
1
chap-GS-LWE.tex
Normal file
1
chap-GS-LWE.tex
Normal file
@ -0,0 +1 @@
|
||||
\chapter{Lattice-Based Dynamic Group Signatures}
|
1
chap-OT-LWE.tex
Normal file
1
chap-OT-LWE.tex
Normal file
@ -0,0 +1 @@
|
||||
\chapter{Lattice-Based Oblivious Transfer with Access Control}
|
5
chap-ZK.tex
Normal file
5
chap-ZK.tex
Normal file
@ -0,0 +1,5 @@
|
||||
\chapter{Zero-Knowledge Arguments}
|
||||
|
||||
\section{Schnorr Proofs}
|
||||
|
||||
\section{Stern-like Proofs}
|
@ -1 +1,2 @@
|
||||
\chapter{Introduction}
|
||||
|
||||
|
@ -1 +0,0 @@
|
||||
\chapter{Pairing-based cryptography}
|
9
chap-proofs.tex
Normal file
9
chap-proofs.tex
Normal file
@ -0,0 +1,9 @@
|
||||
\chapter{Security Proofs in Cryptography}
|
||||
|
||||
\section{Security Reductions}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\section{Random-Oracle Model and Standard Model}
|
1
chap-sigmasig.tex
Normal file
1
chap-sigmasig.tex
Normal file
@ -0,0 +1 @@
|
||||
\chapter{Pairing-Based Dynamic Group Signatures}
|
7
chap-structures.tex
Normal file
7
chap-structures.tex
Normal file
@ -0,0 +1,7 @@
|
||||
\chapter{Underlying Structures}
|
||||
|
||||
\section{Pairing-Based Cryptography}
|
||||
|
||||
\section{Lattice-Based Cryptography}
|
||||
|
||||
\input sec-lattices.tex
|
@ -57,7 +57,7 @@ Soutenue publiquement le jj/mm/aaaa, par :\\
|
||||
\rule[20pt]{\textwidth}{0.5pt}
|
||||
|
||||
\fontsize{25pt}{28pt}\selectfont
|
||||
\textbf{Protocoles cryptographiques pour la protection de la vie privée à base de couplages et de réseaux euclidiens}
|
||||
\textbf{Privacy-preserving cryptography from pairings and lattices}
|
||||
|
||||
\rule{\textwidth}{0.5pt}
|
||||
|
||||
|
30
main.tex
30
main.tex
@ -14,9 +14,13 @@
|
||||
\renewcommand*{\backref}[1]{}
|
||||
\renewcommand*{\backrefalt}[4]{\small Citations: \S{} #4}
|
||||
\hypersetup{colorlinks=true, linkcolor=black!50!blue, citecolor=black!50!green, breaklinks=true}
|
||||
% numbering
|
||||
\setsecnumdepth{subsection}
|
||||
\maxtocdepth {subsection}
|
||||
|
||||
\usepackage{amsmath, amssymb, mathrsfs}
|
||||
\usepackage{amsthm}
|
||||
\usepackage{comment}
|
||||
|
||||
\newtheorem{theorem}{Theorem}
|
||||
\newtheorem{lemma}{Lemma}
|
||||
@ -46,20 +50,36 @@
|
||||
\end{flushright}
|
||||
\vspace*{\stretch{2}}
|
||||
|
||||
\input acknowledgements
|
||||
|
||||
\input abstract
|
||||
|
||||
\input acknowledgements
|
||||
|
||||
\cleardoublepage
|
||||
\tableofcontents
|
||||
\mainmatter
|
||||
|
||||
\input chap-introduction
|
||||
|
||||
\part{Background and Definitions}
|
||||
\input chap-lattices
|
||||
\part{Background}
|
||||
\input chap-proofs
|
||||
|
||||
\input chap-pairings
|
||||
\input chap-structures
|
||||
|
||||
\input chap-ZK
|
||||
|
||||
\part{Group Signatures and Anonymous Credentials}
|
||||
|
||||
\input chap-sigmasig
|
||||
|
||||
\input chap-GS-LWE
|
||||
|
||||
\part{Group Encryption and Adaptive Oblivious Transfer}
|
||||
|
||||
\input chap-GE-LWE
|
||||
|
||||
\input chap-OT-LWE
|
||||
|
||||
\part*{Conclusion}
|
||||
|
||||
\bibliographystyle{alpha}
|
||||
\bibliography{these.bib}
|
||||
|
@ -1,4 +1,8 @@
|
||||
\chapter{Lattices}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% \section{Lattice-Based Cryptography} %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\subsection{Lattices and Hard Lattice Problems}
|
||||
|
||||
A (full-rank) lattice~$L$ is defined as the set of all integer linear
|
||||
combinations of some linearly independent basis
|
||||
@ -31,7 +35,9 @@ For any lattice~$L \subseteq
|
||||
\leq \sqrt{n} \sigma] \geq 1-2^{-\Omega(n)}.$
|
||||
\end{lemma}
|
||||
|
||||
\noindent As shown by Gentry {\em et al.}~\cite{GePeVa08}, Gaussian
|
||||
\subsection{Lattice Trapdoors}
|
||||
|
||||
\noindent As shown by Gentry {\em et al.}~\cite{GPV08}, Gaussian
|
||||
distributions with lattice support can be sampled efficiently
|
||||
given a sufficiently short basis of the lattice.
|
||||
|
||||
@ -86,5 +92,3 @@ an all-but-one trapdoor mechanism (akin to the one of Boneh and Boyen \cite{BB04
|
||||
lattice $\Lambda^\mathbf{u}_q \left( \left[ \begin{array}{c|c} \mathbf A ~&~ \mathbf A \cdot \mathbf R + \mathbf C \end{array} \right] \right)$.
|
||||
%$\{ \mathbf x \in \ZZ^{2 m} : \left[ \begin{array}{c|c} \mathbf A ~&~ \mathbf A \cdot \mathbf R + \mathbf C \end{array} \right] \cdot \mathbf x = \mathbf u \bmod q \}$.
|
||||
\end{lemma}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user