Merge Group Encryption
This commit is contained in:
		
							
								
								
									
										1007
									
								
								chap-GE-LWE.tex
									
									
									
									
									
								
							
							
						
						
									
										1007
									
								
								chap-GE-LWE.tex
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @@ -542,8 +542,7 @@ Let $p = \sigma \cdot \omega(\sqrt{m})$ upper-bound  entries of vectors sampled | ||||
| 		random matrices $\mathbf{D}_k \sample (\Zq^{2n \times 2m})$ for a statistically hiding commitment | ||||
| 			to vectors in $(\{0,1\}^{2m})^N$. | ||||
| 		Return public parameters consisting of | ||||
| 		$$ \mathsf{par}\coloneqq  \{ ~\mathbf{B} \in \Zq^{n \times m} ,~\mathbf{G}_0 \in \Zq^{n \times \ell},~\mathbf{G}_1 \in \Zq^{n \times 2m},~CK  \}.   $$ | ||||
| %where $p > \sigma_1 \sqrt{m}$ upper-bounds  entries of vectors sampled from the distribution $D_{\ZZ^m,\sigma_1}$, | ||||
|     \[ \mathsf{par}\coloneqq  \{ \mathbf{B} \in \Zq^{n \times m} ,\mathbf{G}_0 \in \Zq^{n \times \ell},\mathbf{G}_1 \in \Zq^{n \times 2m},CK  \}. \] | ||||
|  | ||||
| \item[\textsf{Issue} $\leftrightarrow$ \textsf{Obtain} :]  The signer $S$, who holds a key pair $PK\coloneqq \{ \mathbf{A} , ~\{\mathbf{A}_j\}_{j=0}^\ell,~\mathbf{D},~\mathbf{u} \}$, $SK\coloneqq \mathbf{T}_{\mathbf{A}}$, interacts with the user $U$ | ||||
|  who has a message $(\mathfrak{m}_1,\ldots,\mathfrak{m}_N)$, in the following interactive protocol. \smallskip | ||||
| @@ -551,15 +550,17 @@ Let $p = \sigma \cdot \omega(\sqrt{m})$ upper-bound  entries of vectors sampled | ||||
| \item[1.] $U$ samples  $\mathbf{s}' \sample D_{\ZZ^{2m},\sigma} $ and computes $ \mathbf{c}_{\mathfrak{m}} = \mathbf{D}_0 \cdot \mathbf{s}' + \sum_{k=1}^N \mathbf{D}_k \cdot \mathfrak{m}_k \in \mathbb{Z}_q^{2n}$ | ||||
|  which is sent to $S$ as a commitment to $(\mathfrak{m}_1,\ldots,\mathfrak{m}_N)$. In addition, $U$ encrypts  $\{\mathfrak{m}_k\}_{k=1}^N$ and $\mathbf{s}'$ under the dual-Regev public key $(\mathbf{B},\mathbf{G}_1)$ | ||||
|    by computing for all $k \in \{1,\ldots,N\}$: | ||||
| \begin{eqnarray} \label{enc-Mk} \nonumber | ||||
| \mathbf{c}_{k} &=& (\mathbf{c}_{k,1},\mathbf{c}_{k,2}) \\ &=&  \big( \mathbf{B}^T \cdot \mathbf{s}_{k} + \mathbf{e}_{k,1} ,~  \mathbf{G}_1^T \cdot \mathbf{s}_{k} + \mathbf{e}_{k,2} + \mathfrak{m}_k \cdot \lfloor q/2 \rfloor  \big) \in \Zq^m \times \Zq^{2m} \qquad %\forall k\in \{1,\ldots,N\} | ||||
| %\qquad | ||||
| \end{eqnarray} | ||||
| \begin{align} \label{enc-Mk} \nonumber | ||||
| \mathbf{c}_{k} & = (\mathbf{c}_{k,1},\mathbf{c}_{k,2}) \\ | ||||
|                & =   \big( \mathbf{B}^T \cdot \mathbf{s}_{k} + \mathbf{e}_{k,1} ,~  \mathbf{G}_1^T \cdot \mathbf{s}_{k} + \mathbf{e}_{k,2} + \mathfrak{m}_k \cdot \lfloor q/2 \rfloor  \big) \in \Zq^m \times \Zq^{2m} | ||||
| \end{align} | ||||
| for  randomly chosen $\mathbf{s}_{k} \sample \chi^n$, $\mathbf{e}_{k,1} \sample \chi^m$, $\mathbf{e}_{k,2} \sample  \chi^{2m}$, | ||||
| and \begin{eqnarray} \label{enc-s} \nonumber | ||||
| \mathbf{c}_{s'} &=& (\mathbf{c}_{s',1},\mathbf{c}_{s',2}) \\ &=&  \big( \mathbf{B}^T \cdot \mathbf{s}_{0} + \mathbf{e}_{0,1} ,~  \mathbf{G}_1^T \cdot \mathbf{s}_{0} + \mathbf{e}_{0,2} + \mathbf{s}' \cdot \lfloor q/p \rfloor  \big)  \in \Zq^m \times \Zq^{2m} | ||||
| \end{eqnarray} | ||||
|  where $\mathbf{s}_{0} \sample \chi^n$, $\mathbf{e}_{0,1} \sample \chi^m$, $\mathbf{e}_{0,2} \sample  \chi^{2m}$.  The ciphertexts $\{\mathbf{c}_k\}_{k=1}^N$ and $\mathbf{c}_{s'}$ are | ||||
| and | ||||
| \begin{align} \label{enc-s} \nonumber | ||||
| \mathbf{c}_{s'} & = (\mathbf{c}_{s',1},\mathbf{c}_{s',2}) \\ | ||||
|                 & = \big( \mathbf{B}^T \cdot \mathbf{s}_{0} + \mathbf{e}_{0,1} ,~  \mathbf{G}_1^T \cdot \mathbf{s}_{0} + \mathbf{e}_{0,2} + \mathbf{s}' \cdot \lfloor q/p \rfloor  \big)  \in \Zq^m \times \Zq^{2m} | ||||
| \end{align} | ||||
| where $\mathbf{s}_{0} \sample \chi^n$, $\mathbf{e}_{0,1} \sample \chi^m$, $\mathbf{e}_{0,2} \sample  \chi^{2m}$.  The ciphertexts $\{\mathbf{c}_k\}_{k=1}^N$ and $\mathbf{c}_{s'}$ are | ||||
| sent to $S$ along with $\mathbf{c}_{\mathfrak{m}}$. | ||||
|  | ||||
| Then, $U$ generates an interactive zero-knowledge argument to convince~$S$ that | ||||
| @@ -589,19 +590,25 @@ does the following. \smallskip \smallskip | ||||
| \begin{itemize} | ||||
| \item[1.] Using  $(\mathbf{B},\mathbf{G}_0)$ and $(\mathbf{B},\mathbf{G}_1)$   generate perfectly binding commitments to $\tau \in \{0,1\}^\ell$, $\{\mathfrak{m}_k \}_{k=1}^N$, | ||||
|  $\mathbf{v}_1,\mathbf{v}_2 \in \ZZ^m$ and $\mathbf{s} \in \ZZ^{2m}$.  Namely, compute | ||||
| \begin{eqnarray*}  \nonumber | ||||
| \mathbf{c}_{\tau} &=& (\mathbf{c}_{\tau,1},\mathbf{c}_{\tau,2}) \\ &=&  \big( \mathbf{B}^T \cdot \mathbf{s}_{\tau} + \mathbf{e}_{\tau,1} ,~  \mathbf{G}_0^T \cdot \mathbf{s}_{\tau} + \mathbf{e}_{\tau,2} + \tau | ||||
| \begin{align*} | ||||
|   \mathbf{c}_{\tau} & = (\mathbf{c}_{\tau,1},\mathbf{c}_{\tau,2}) \\ | ||||
|                     & =  \big( \mathbf{B}^T \cdot \mathbf{s}_{\tau} + \mathbf{e}_{\tau,1} ,~  \mathbf{G}_0^T \cdot \mathbf{s}_{\tau} + \mathbf{e}_{\tau,2} + \tau | ||||
|   \cdot \lfloor q/2 \rfloor  \big)  \in \Zq^m \times \Zq^\ell, \\ | ||||
|   \mathbf{c}_{k} &=& (\mathbf{c}_{k,1},\mathbf{c}_{k,2}) \\ &=&  \big( \mathbf{B}^T \cdot \mathbf{s}_{k} + \mathbf{e}_{k,1} ,~  \mathbf{G}_1^T \cdot \mathbf{s}_{k} + \mathbf{e}_{k,2} + \mathfrak{m}_k \cdot \lfloor q/2 \rfloor  \big) \in \Zq^m \times \Zq^{2m} | ||||
|   \\ && \hspace{7.6cm} \forall k\in \{1,\ldots,N\} \qquad | ||||
| \end{eqnarray*} | ||||
| % | ||||
|   \mathbf{c}_{k}   & = (\mathbf{c}_{k,1},\mathbf{c}_{k,2}) \\ | ||||
|                    & = \big( \mathbf{B}^T \cdot \mathbf{s}_{k} + \mathbf{e}_{k,1} ,~  \mathbf{G}_1^T \cdot \mathbf{s}_{k} + \mathbf{e}_{k,2} + \mathfrak{m}_k \cdot \lfloor q/2 \rfloor  \big) \in \Zq^m \times \Zq^{2m} \\ | ||||
|                    & \hspace{7.6cm} \forall k\in \{1,\ldots,N\} | ||||
| \end{align*} | ||||
| where $\mathbf{s}_{\tau}, \mathbf{s}_{k}  \sample \chi^n$, $\mathbf{e}_{\tau,1} , \mathbf{e}_{k,1} \sample \chi^m$, $\mathbf{e}_{\tau,2} \sample  \chi^\ell$,        $\mathbf{e}_{k,2} \sample  \chi^{2m}$, | ||||
| as well as \begin{eqnarray*} \nonumber | ||||
| \mathbf{c}_{\mathbf{v}} &=& (\mathbf{c}_{\mathbf{v},1},\mathbf{c}_{\mathbf{v},2}) \\ &=&  \big( \mathbf{B}^T \cdot \mathbf{s}_{\mathbf{v}} + \mathbf{e}_{\mathbf{v},1} ,~  \mathbf{G}_1^T \cdot \mathbf{s}_{\mathbf{v}} + \mathbf{e}_{\mathbf{v},2} + \mathbf{v}   \cdot \lfloor q/p \rfloor  \big)  \in \Zq^m \times \Zq^{2m} | ||||
|  \\ | ||||
| as well as | ||||
| \begin{align*} | ||||
|   \mathbf{c}_{\mathbf{v}} & = (\mathbf{c}_{\mathbf{v},1},\mathbf{c}_{\mathbf{v},2}) \\ | ||||
|                           & =  \big( \mathbf{B}^T \cdot \mathbf{s}_{\mathbf{v}} + \mathbf{e}_{\mathbf{v},1} ,~  \mathbf{G}_1^T \cdot \mathbf{s}_{\mathbf{v}} + \mathbf{e}_{\mathbf{v},2} + \mathbf{v}   \cdot \lfloor q/p \rfloor  \big)  \in \Zq^m \times \Zq^{2m} | ||||
|   \\ | ||||
| %\mathbf{c}_{\mathbf{v}_2} &=& (\mathbf{c}_{\mathbf{v}_2,1},\mathbf{c}_{\mathbf{v}_2,2}) \\ &=&  \big( \mathbf{B}^T \cdot \mathbf{s}_{\mathbf{v}_2} + \mathbf{e}_{\mathbf{v}_2,1} ,~  \mathbf{G}_1^T %\cdot \mathbf{s}_{\mathbf{v}_2} + \mathbf{e}_{\mathbf{v}_2,2} + \mathbf{v}_2  \cdot \lfloor q/p \rfloor  \big)  \in \Zq^m \times \Zq^m \\ | ||||
| \mathbf{c}_{s} &=& (\mathbf{c}_{s,1},\mathbf{c}_{s,2}) \\ &=&  \big( \mathbf{B}^T \cdot \mathbf{s}_{0} + \mathbf{e}_{0,1} ,~  \mathbf{G}_1^T \cdot \mathbf{s}_{0} + \mathbf{e}_{0,2} + \mathbf{s}  \cdot \lfloor q/p \rfloor  \big)  \in \Zq^m \times \Zq^{2m} , | ||||
| \end{eqnarray*} | ||||
|   \mathbf{c}_{s} & = (\mathbf{c}_{s,1},\mathbf{c}_{s,2}) \\ | ||||
|                  & =  \big( \mathbf{B}^T \cdot \mathbf{s}_{0} + \mathbf{e}_{0,1} ,~  \mathbf{G}_1^T \cdot \mathbf{s}_{0} + \mathbf{e}_{0,2} + \mathbf{s}  \cdot \lfloor q/p \rfloor  \big)  \in \Zq^m \times \Zq^{2m} , | ||||
| \end{align*} | ||||
|  where $\mathbf{s}_{\mathbf{v}}, \mathbf{s}_{0}  \sample \chi^n$, $\mathbf{e}_{\mathbf{v},1},\mathbf{e}_{0,1} \sample \chi^m$,  | ||||
|     $\mathbf{e}_{\mathbf{v},2},\mathbf{e}_{0,2}\sample \chi^{2m}$. | ||||
| \item[2.] Prove in zero-knowledge that $\mathbf{c}_{\tau}$, $\mathbf{c}_{s}$, $\mathbf{c}_{\mathbf{v} }$,  $\{\mathbf{c}_k\}_{k=1}^N$ encrypt a valid message-signature pair. In Section~\ref{subsection:zk-for-signature}, we show that this involved zero-knowledge protocol can be derived from the statistical zero-knowledge argument of knowledge for a simpler, but more general  relation  that we explicitly present in \cref{se:gs-lwe-stern}. The proof system can be made statistically ZK for a malicious verifier using standard techniques (assuming a common reference string, we can use  \cite{Dam00}).  In the random oracle model, it can | ||||
|   | ||||
							
								
								
									
										10
									
								
								these.bib
									
									
									
									
									
								
							
							
						
						
									
										10
									
								
								these.bib
									
									
									
									
									
								
							| @@ -2821,4 +2821,14 @@ | ||||
|   publisher = {Springer}, | ||||
| } | ||||
|  | ||||
| @InProceedings{BBDP01, | ||||
|   author    = {Bellare, Mihir and Boldyreva, Alexandra and Desai, Anand and Pointcheval, David}, | ||||
|   title     = {{Key-Privacy in Public-Key Encryption}}, | ||||
|   booktitle = {PKC}, | ||||
|   year      = {2001}, | ||||
|   series    = {LNCS}, | ||||
|   pages     = {566--582}, | ||||
|   publisher = {Springer}, | ||||
| } | ||||
|  | ||||
| @Comment{jabref-meta: databaseType:bibtex;} | ||||
|   | ||||
		Reference in New Issue
	
	Block a user