negl
This commit is contained in:
parent
e2c747bca3
commit
ed4b78f810
@ -306,8 +306,7 @@ adversarially-controlled user.
|
|||||||
attacks} if, for any $\ppt$ adversary $\adv$ involved in Experiment~$\Exp{\textrm{mis-id}}{\adv}(\lambda)$
|
attacks} if, for any $\ppt$ adversary $\adv$ involved in Experiment~$\Exp{\textrm{mis-id}}{\adv}(\lambda)$
|
||||||
described in Figure~\ref{exp:mis-id}, we have:
|
described in Figure~\ref{exp:mis-id}, we have:
|
||||||
\[\advantage{\adv}{\mathrm{mis}\textrm{-}\mathrm{id}}(\lambda) \triangleq
|
\[\advantage{\adv}{\mathrm{mis}\textrm{-}\mathrm{id}}(\lambda) \triangleq
|
||||||
\Proba{\,\Exp{\mathrm{mis}\textrm{-}\mathrm{id}}{\adv}(\lambda)=1} =
|
\Proba{\,\Exp{\mathrm{mis}\textrm{-}\mathrm{id}}{\adv}(\lambda)=1} \leq \negl[\lambda].\]
|
||||||
\negl[\lambda].\]
|
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
|
|
||||||
@ -364,7 +363,7 @@ The adversary eventually aims at framing an honest group member.
|
|||||||
%
|
%
|
||||||
A dynamic group signature scheme is secure against \emph{framing attacks} if,
|
A dynamic group signature scheme is secure against \emph{framing attacks} if,
|
||||||
for any $\ppt$ adversary $\adv$ involved in the experiment~$\Exp{\mathrm{fra}}{\adv}(\lambda)$ described Figure~\ref{exp:frame}), it holds that
|
for any $\ppt$ adversary $\adv$ involved in the experiment~$\Exp{\mathrm{fra}}{\adv}(\lambda)$ described Figure~\ref{exp:frame}), it holds that
|
||||||
\[ \advantage{\adv}{\mathrm{fra}}(\lambda)=\Proba{\Exp{\mathrm{fra}}{\adv}(\lambda)=1} \in \negl[\lambda]. \]
|
\[ \advantage{\adv}{\mathrm{fra}}(\lambda)=\Proba{\Exp{\mathrm{fra}}{\adv}(\lambda)=1} \leq \negl[\lambda]. \]
|
||||||
%
|
%
|
||||||
|
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
@ -103,7 +103,7 @@ The distribution of outputs of the environment in the different settings is deno
|
|||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
An AC-OT protocol is said to securely implement the functionality if for any real-world adversary $\adv$ and any real world environment $\mathcal E$, there exists an ideal-world simulator $\mathcal A'$ controlling the same parties in the ideal-world as $\adv$ does in the real-world, such that
|
An AC-OT protocol is said to securely implement the functionality if for any real-world adversary $\adv$ and any real world environment $\mathcal E$, there exists an ideal-world simulator $\mathcal A'$ controlling the same parties in the ideal-world as $\adv$ does in the real-world, such that
|
||||||
\[ | \mathbf{Real}_{\mathcal E, \adv}(\lambda) - \mathbf{Ideal}_{\mathcal{E}, \adv}(\lambda) | = \negl(\lambda). \]
|
\[ | \mathbf{Real}_{\mathcal E, \adv}(\lambda) - \mathbf{Ideal}_{\mathcal{E}, \adv}(\lambda) | \leq \negl(\lambda). \]
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
|
|
||||||
|
@ -123,7 +123,7 @@ an attack is successful if the probability that it succeed is noticeable.
|
|||||||
\index{Probability!Negligible} \index{Probability!Noticeable} \index{Probability!Overwhelming}
|
\index{Probability!Negligible} \index{Probability!Noticeable} \index{Probability!Overwhelming}
|
||||||
Let $f : \NN \to [0,1]$ be a function. The function $f$ is said to be \emph{negligible} if $f(n) = n^{-\omega(1)}_{}$, and this is written $f(n) = \negl[n]$.\\
|
Let $f : \NN \to [0,1]$ be a function. The function $f$ is said to be \emph{negligible} if $f(n) = n^{-\omega(1)}_{}$, and this is written $f(n) = \negl[n]$.\\
|
||||||
Non-negligible functions are also called \emph{noticeable} functions.\\
|
Non-negligible functions are also called \emph{noticeable} functions.\\
|
||||||
Finally, if $f = 1- \negl[n]$, $f$ is said to be \emph{overwhelming}.
|
Finally, if $f = 1 - \negl[n]$, $f$ is said to be \emph{overwhelming}.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
Now, we have to define two more notions to be able to work on security proofs.
|
Now, we have to define two more notions to be able to work on security proofs.
|
||||||
|
Loading…
Reference in New Issue
Block a user