Some typos
This commit is contained in:
		
							
								
								
									
										156
									
								
								chap-GS-LWE.tex
									
									
									
									
									
								
							
							
						
						
									
										156
									
								
								chap-GS-LWE.tex
									
									
									
									
									
								
							| @@ -121,7 +121,6 @@ coordinate of $\mathbf{v}$ by its binary representation. | ||||
|       \item[1.] Run $\TrapGen(1^n,1^m,q)$ to get~$\mathbf{A} \in | ||||
|         \Zq^{n \times m}$ and a short basis $\mathbf{T}_{\mathbf{A}}$ of | ||||
|         $\Lambda_q^{\perp}(\mathbf{A}).$  This basis allows computing short vectors in $\Lambda_q^{\perp}(\mathbf{A})$ with a Gaussian parameter $\sigma$. | ||||
| %	$\sigma \geq \| \widetilde{\mathbf{T}_{\mathbf{A}}} \| \cdot \omega (\sqrt{\log m})$. | ||||
|         Next, choose $\ell+1$ random   $\mathbf{A}_0,\mathbf{A}_1,\ldots,\mathbf{A}_{\ell} \sample \U(\Zq^{n \times m})$. %, where $\ell = \Theta(\lambda)$. | ||||
|       \item[2.]  Choose  random matrices $\mathbf{D} \sample \U(\Zq^{n \times m})$, $\mathbf{D}_0,\mathbf{D}_1,\ldots,\mathbf{D}_{N} \sample \U(\Zq^{2n \times 2m})$ as well as a random     vector | ||||
|         $\mathbf{u} \sample \U(\Zq^n)$. \smallskip | ||||
| @@ -303,7 +302,6 @@ which implies that the vector | ||||
| is in $\Lambda_q^{\perp}(\bar{\mathbf{A}})$. Moreover, with overwhelming probability, this vector is non-zero since, in $\adv$'s view, the distribution of | ||||
|  $\mathbf{e}_u \in \ZZ^m$ is $D_{\Lambda_q^{\mathbf{u}}(\bar{\mathbf{A}}),\sigma_1}$, which ensures that $\mathbf{e}_u$ is  statistically hidden by | ||||
| the syndrome $\mathbf{u}  =   \bar{\mathbf{A}}  \cdot  \mathbf{e}_u $. Finally, the norm of $\mathbf{w}$ is smaller than | ||||
| % modified by Khoa: $\| \mathbf{w} \| \leq m^{3/2} \sigma ( \sigma_1 + N / \sqrt{2}) + m^{1/2} ( \sigma + \sigma_1) + (\ell+1) \sigma m$, | ||||
| $\beta' = m^{3/2} \sigma^2 ( \ell+3) + m^{1/2} \sigma_1 $ | ||||
|  which yields a valid solution of the given $\mathsf{SIS}_{n,m,q,\beta'}$ instance | ||||
|  with overwhelming probability. | ||||
| @@ -355,7 +353,6 @@ We prove the result using a sequence of games. For each $i$, we denote by $W_i$ | ||||
|       \mathbf{A} &=&  \mathbf{D} \cdot \mathbf{S} \\ \label{setup-sig3} | ||||
|       \mathbf{A}_0 &=&  \mathbf{D} \cdot \mathbf{S}_0 + h_0 \cdot \mathbf{C} \\ \nonumber | ||||
|       \mathbf{A}_j &=&  \mathbf{D} \cdot \mathbf{S}_j + h_j \cdot \mathbf{C} \qquad \qquad \forall j \in \{1,\ldots,\ell\} %\\ \nonumber | ||||
| %\mathbf{D}_k &=&  \mathbf{D} \cdot \mathbf{R}_k  \qquad \qquad \qquad \quad~ \forall k \in \{1,\ldots,N\}. | ||||
|     \end{eqnarray} | ||||
|     In addition, $\bdv$ picks random matrices $\mathbf{D}_1,\ldots,\mathbf{D}_N \sample (\Zq^{2n \times 2m})$ and a random vector $\mathbf{c}_M \sample (\Zq^{2n})$. It samples | ||||
|     short vectors $\mathbf{v}_1 ,\mathbf{v}_2 \sample D_{\ZZ^m,\sigma}$ and computes $\mathbf{u} \in \Zq^n$ | ||||
| @@ -508,21 +505,6 @@ $\mathbf{C}=\mathbf{D}_0 \cdot \mathbf{s} + \sum_{k=1}^N \mathbf{D}_k \cdot \mat | ||||
|  commitment key $(\mathbf{D}_0,\mathbf{D}_1,\ldots,\mathbf{D}_N) \in (\Zq^{2n \times 2m})^{N+1} $. It is easy to see that the resulting commitment remains statistically hiding and computationally | ||||
|  binding under the $\mathsf{SIS}$ assumption. | ||||
|  | ||||
| %If we assume that the signer only sees  perfectly hiding commitments $ \mathbf{c}_{\mathfrak{m}} = \mathbf{D}_0 \cdot \mathbf{s}' + \sum_{k=1}^N \mathbf{D}_k \cdot \mathfrak{m}_k$ and $\mathbf{C}= \mathbf{B}_0 \cdot %\mathbf{r} + \sum_{k=1}^N \mathbf{B}_k \cdot \mathfrak{m}_k$ to the message    $(\mathfrak{m}_1,\ldots,\mathfrak{m}_N) \in (\{0,1\}^m)^N$ on which the | ||||
| %user wants to obtain a signature, a simple way for the | ||||
| %user to prove that $\mathbf{C}$ and $ \mathbf{c}_{\mathfrak{m}}$ are commitments to the same message is to | ||||
| %  generate a  witness indistinguishable proof  of knowledge of a short vector | ||||
| %  $$\mathbf{v}=[ \mathfrak{m}_1^T \mid \ldots \mid \mathfrak{m}_N^T  \mid  \mathbf{r}^T \mid {\mathbf{s}'}^T  ]^T \in   (\{0,1\}^m)^N \times (\ZZ^m)^2    $$ satisfying | ||||
| %	\begin{eqnarray*} | ||||
| %   \left[ \begin{array}{c|c|c|c|c|c} | ||||
| %\mathbf{B}_1  ~ &  ~  \mathbf{B}_2 ~ & ~  \ldots ~ &~ \mathbf{B}_{N}  ~& ~   \mathbf{B}_0 ~ &      \\ \hline | ||||
| % \mathbf{D}_1  ~ & ~ \mathbf{D}_2~ & ~ \ldots  ~ & ~\mathbf{D}_N~ & &   ~ \mathbf{D}_0~ | ||||
| % \end{array} \right] \cdot \mathbf{v} | ||||
| %= \begin{bmatrix} | ||||
| %\mathbf{C} \\ \hline   \mathbf{c}_{\mathfrak{m}} | ||||
| %\end{bmatrix}. | ||||
| %\end{eqnarray*} | ||||
|  | ||||
| In order to make our construction usable in  the definitional framework of Camenisch \textit{et al.} \cite{CKL+15}, we   assume common public parameters | ||||
|  (i.e., a common reference string) and encrypt all witnesses of which knowledge is being proved under a public key included in the common reference string. The resulting ciphertexts thus serve as statistically binding commitments | ||||
|  to the witnesses. | ||||
| @@ -566,7 +548,6 @@ sent to $S$ along with $\mathbf{c}_{\mathfrak{m}}$. | ||||
| Then, $U$ generates an interactive zero-knowledge argument to convince~$S$ that | ||||
| $ \mathbf{c}_{\mathfrak{m}}$ is a commitment to $(\mathfrak{m}_1, \ldots, \mathfrak{m}_N)$ with the randomness   $\mathbf{s}'$  such that $\{\mathfrak{m}_k\}_{k=1}^N$ and | ||||
|   $\mathbf{s}'$   were honestly encrypted to $\{ \mathbf{c}_{k} \}_{i=1}^N$ and $\mathbf{c}_{s'}$, as in~(\ref{enc-Mk}) and~(\ref{enc-s}). | ||||
| %is consistent with the messages encrypted in $\{ \mathbf{c}_{k} \}_{i=1}^N$ and $\mathbf{c}_{s'}$. | ||||
| For convenience, this argument system will be described in Section~\ref{subsection:zk-for-commitments}, where we demonstrate that, together with other zero-knowledge protocols used in this work, it can be derived from a Stern-like~\cite{Ste96} protocol constructed in \cref{se:gs-lwe-stern}. | ||||
|  | ||||
| \item[2.]  If the argument of step 1 properly verifies, $S$ samples $\mathbf{s}'' \sample D_{\ZZ^{2m},\sigma_0}$ and computes | ||||
| @@ -603,9 +584,7 @@ where $\mathbf{s}_{\tau}, \mathbf{s}_{k}  \sample \chi^n$, $\mathbf{e}_{\tau,1} | ||||
| as well as | ||||
| \begin{align*} | ||||
|   \mathbf{c}_{\mathbf{v}} & = (\mathbf{c}_{\mathbf{v},1},\mathbf{c}_{\mathbf{v},2}) \\ | ||||
|                           & =  \big( \mathbf{B}^T \cdot \mathbf{s}_{\mathbf{v}} + \mathbf{e}_{\mathbf{v},1} ,~  \mathbf{G}_1^T \cdot \mathbf{s}_{\mathbf{v}} + \mathbf{e}_{\mathbf{v},2} + \mathbf{v}   \cdot \lfloor q/p \rfloor  \big)  \in \Zq^m \times \Zq^{2m} | ||||
|   \\ | ||||
| %\mathbf{c}_{\mathbf{v}_2} &=& (\mathbf{c}_{\mathbf{v}_2,1},\mathbf{c}_{\mathbf{v}_2,2}) \\ &=&  \big( \mathbf{B}^T \cdot \mathbf{s}_{\mathbf{v}_2} + \mathbf{e}_{\mathbf{v}_2,1} ,~  \mathbf{G}_1^T %\cdot \mathbf{s}_{\mathbf{v}_2} + \mathbf{e}_{\mathbf{v}_2,2} + \mathbf{v}_2  \cdot \lfloor q/p \rfloor  \big)  \in \Zq^m \times \Zq^m \\ | ||||
|                           & =  \big( \mathbf{B}^T \cdot \mathbf{s}_{\mathbf{v}} + \mathbf{e}_{\mathbf{v},1} ,~  \mathbf{G}_1^T \cdot \mathbf{s}_{\mathbf{v}} + \mathbf{e}_{\mathbf{v},2} + \mathbf{v}   \cdot \lfloor q/p \rfloor  \big)  \in \Zq^m \times \Zq^{2m} \\ | ||||
|   \mathbf{c}_{s} & = (\mathbf{c}_{s,1},\mathbf{c}_{s,2}) \\ | ||||
|                  & =  \big( \mathbf{B}^T \cdot \mathbf{s}_{0} + \mathbf{e}_{0,1} ,~  \mathbf{G}_1^T \cdot \mathbf{s}_{0} + \mathbf{e}_{0,2} + \mathbf{s}  \cdot \lfloor q/p \rfloor  \big)  \in \Zq^m \times \Zq^{2m} , | ||||
| \end{align*} | ||||
| @@ -617,7 +596,6 @@ as well as | ||||
| \end{itemize} | ||||
| \end{description} | ||||
|  | ||||
| %To establish the security of the protocol, | ||||
| We   require that the adversary be unable to prove possession of a signature of a message $(\mathfrak{m}_1,\ldots,\mathfrak{m}_N)$ for which it did not legally | ||||
| obtain a credential by interacting with the issuer.  Note that the messages that are blindly signed by the issuer are uniquely defined since, at each signing | ||||
| query, the adversary is required to supply perfectly binding commitments $\{\mathbf{c}_k\}_{k=1}^N$ to $(\mathfrak{m}_1,\ldots,\mathfrak{m}_N)$.  | ||||
| @@ -711,40 +689,41 @@ probabilities during hybrid games where the two distributions are not close in t | ||||
|   was never used by the signing oracle. If $coin=1$, $\bdv$ expects $\adv$ to   recycle  a tag $\tau^\star$ involved in some signing query in its forgery. Namely, | ||||
|   if $coin=1$, $\bdv$ expects an attack which is either a Type II forgery or a Type III forgery. | ||||
|   If $coin=2$,   $\bdv$ rather bets that $\adv$ will break the soundness of the interactive argument systems used in the signature issuing protocol or the $\mathsf{Prove}$ protocol. | ||||
|   Depending on the value of $coin \in \{0,1,2 \}$, $\bdv$ generates the issuer's public key $PK$ and simulates $\adv$'s view in  different ways. \medskip | ||||
|   Depending on the value of $coin \in \{0,1,2 \}$, $\bdv$ generates the issuer's public key $PK$ and simulates $\adv$'s view in  different ways. | ||||
|  | ||||
|   \noindent $\bullet$ If $coin=0$, $\bdv$ undertakes to find a short non-zero vector of $\Lambda_q^{\perp}(\bar{\mathbf{A}}_1)$, which in turn yields a short non-zero vector | ||||
|   of $\Lambda_q^{\perp}(\bar{\mathbf{A}})$. To this end, it defines $\mathbf{A}=\bar{\mathbf{A}}_1$ and | ||||
|   generates $PK$ by computing $\{\mathbf{A}_j\}_{j=0}^\ell$ as re-randomizations of $\mathbf{A} \in \ZZ_q^{n \times m}$ as in the proof of Lemma \ref{le:lwe-gs-type-I-attacks}. This implies that $\bdv$ can always answer signing queries using the trapdoor $\mathbf{T}_{\mathbf{C}} | ||||
|   \in \ZZ^{m \times m}$ of the matrix $\mathbf{C}$ without even knowing the messages hidden in the commitments $ \mathbf{c}_{\mathfrak{m}}$ and $\{\mathbf{c}_k\}_{k=1}^N$, $\mathbf{c}_{s'}$. | ||||
|   When the adversary generates a proof of possession of its own at the end of the game, $\bdv$ uses the matrices $\mathbf{E}_0 \in \ZZ^{ m \times \ell}$ and $\mathbf{E}_1 \in \ZZ^{m \times 2m}$ | ||||
|   as an extraction trapdoor to extract a plain message-signature pair $\big( (\mathfrak{m}_1^\star,\ldots,\mathfrak{m}_N^\star),  (\tau^\star,\mathbf{v}^\star,\mathbf{s}^\star) \big)$ | ||||
|   from the ciphertexts | ||||
|   $\{ \mathbf{c}_k^\star\}_{k=1}^N$ $(\mathbf{c}_{\mathbf{v}_1}^\star,\mathbf{c}_{\mathbf{v}_2^\star})$, $\mathbf{c}_{\tau}^\star$, $\mathbf{c}_{\mathbf{s}}^\star$ produced by $\adv$ as part of its forgery. | ||||
|   If the extracted $\tau^\star$ is not a new tag, then $\bdv$ aborts. Otherwise, it can solve the given  $\mathsf{SIS}$ instance exactly as in the proof of Lemma \ref{le:lwe-gs-type-I-attacks}. | ||||
|   \medskip | ||||
|   \begin{itemize} | ||||
|     \item If $coin=0$, $\bdv$ undertakes to find a short non-zero vector of $\Lambda_q^{\perp}(\bar{\mathbf{A}}_1)$, which in turn yields a short non-zero vector | ||||
|       of $\Lambda_q^{\perp}(\bar{\mathbf{A}})$. To this end, it defines $\mathbf{A}=\bar{\mathbf{A}}_1$ and | ||||
|       generates $PK$ by computing $\{\mathbf{A}_j\}_{j=0}^\ell$ as re-randomizations of $\mathbf{A} \in \ZZ_q^{n \times m}$ as in the proof of Lemma \ref{le:lwe-gs-type-I-attacks}. This implies that $\bdv$ can always answer signing queries using the trapdoor $\mathbf{T}_{\mathbf{C}} | ||||
|       \in \ZZ^{m \times m}$ of the matrix $\mathbf{C}$ without even knowing the messages hidden in the commitments $ \mathbf{c}_{\mathfrak{m}}$ and $\{\mathbf{c}_k\}_{k=1}^N$, $\mathbf{c}_{s'}$. | ||||
|       When the adversary generates a proof of possession of its own at the end of the game, $\bdv$ uses the matrices $\mathbf{E}_0 \in \ZZ^{ m \times \ell}$ and $\mathbf{E}_1 \in \ZZ^{m \times 2m}$ | ||||
|       as an extraction trapdoor to extract a plain message-signature pair $\big( (\mathfrak{m}_1^\star,\ldots,\mathfrak{m}_N^\star),  (\tau^\star,\mathbf{v}^\star,\mathbf{s}^\star) \big)$ | ||||
|       from the ciphertexts | ||||
|       $\{ \mathbf{c}_k^\star\}_{k=1}^N$ $(\mathbf{c}_{\mathbf{v}_1}^\star,\mathbf{c}_{\mathbf{v}_2^\star})$, $\mathbf{c}_{\tau}^\star$, $\mathbf{c}_{\mathbf{s}}^\star$ produced by $\adv$ as part of its forgery. | ||||
|       If the extracted $\tau^\star$ is not a new tag, then $\bdv$ aborts. Otherwise, it can solve the given  $\mathsf{SIS}$ instance exactly as in the proof of Lemma \ref{le:lwe-gs-type-I-attacks}. | ||||
|  | ||||
|   \noindent $\bullet$ If $coin=1$, the proof proceeds as in the proof of Lemma \ref{le:lwe-gs-type-II-attacks} with one difference in \textsf{Game} $3$. This difference is that \textsf{Game} $3$ is no longer statistically | ||||
|   indistinguishable from \textsf{Game} $2$: instead, we rely on an argument based on the R\'enyi divergence. | ||||
|   In \textsf{Game} $3$, $\bdv$ generates $PK$ exactly as in the proof of Lemma \ref{le:lwe-gs-type-II-attacks}. This implies that $\bdv$ takes a guess $i^\dagger \leftarrow U(\{1,\ldots,Q\})$ | ||||
|   with the hope that $\adv$ will choose to recycle the tag    $\tau^{(i^\dagger)}  $ of the $i^\dagger$-th signing query (i.e., $ \tau^\star =\tau^{(i^\dagger)} $). | ||||
|   As in the proof of Lemma \ref{le:lwe-gs-type-II-attacks}, $\bdv$  defines $\mathbf{D}=\bar{\mathbf{A}}_1 \in \ZZ_q^{n \times m}$ and $\mathbf{A}= \bar{\mathbf{A}}_1 \cdot \mathbf{S} $ for a small-norm | ||||
|   matrix $\mathbf{S} \in \ZZ^{m \times m}$ with Gaussian entries. It also  ``programs'' the matrices $\{ \mathbf{A}_j\}_{j=0}^\ell$ in such a way that | ||||
|   the trapdoor precisely vanishes at the $i^\dagger$-th signing query: in other words, | ||||
|   the sum $$\mathbf{A}_0 + \sum_{j=1}^\ell \tau^{(i)} [j] \mathbf{A}_j = \bar{\mathbf{A}}_1 \cdot (\mathbf{S}_0 + \sum_{j=1}^\ell \tau^{(i)} [j] \cdot \mathbf{S}_j) + (h_0 + \sum_{j=1}^\ell \tau^{(i)} [j] \cdot h_j ) \cdot \mathbf{C} $$ does not depend on the matrix $\mathbf{C} \in \ZZ_q^{n \times m}$ | ||||
|   (of which a trapdoor $\mathbf{T}_{\mathbf{C}} \in \ZZ^{m \times m}$ is known to $\bdv$) when $\tau^{(i)} = \tau^{(i^\dagger)}$, but it does for all other tags $\tau^{(i)} \neq \tau^{(i^\dagger)}$. In the setup phase, | ||||
|   $\bdv$ also sets up a random  matrix $\mathbf{D}_0 \in U(\ZZ_q^{2n \times 2m})$ which it obtains by choosing | ||||
|   $\mathbf{A}' \sample (\ZZ_q^{n \times 2m})$  to define | ||||
|   \begin{eqnarray} \label{def-D0} | ||||
|     \mathbf{D}_0=\begin{bmatrix} \bar{\mathbf{A}} \\ \hline \mathbf{A}' \end{bmatrix} \in \ZZ_q^{2n \times 2m}. | ||||
|   \end{eqnarray} | ||||
|   Then, it  computes $\mathbf{c}_M = \mathbf{D}_0 \cdot \mathbf{s}_0  \in \ZZ_q^{2n}$ for a short Gaussian vector | ||||
|   $\mathbf{s}_0 \sample D_{\ZZ^{2m},\sigma_0}$, which will be used in the $i^\dagger$-th query. | ||||
|   Next, it samples short vectors $\mathbf{v}_1,\mathbf{v}_2 \sample D_{\ZZ^m,\sigma}$ to define | ||||
|   $$\mathbf{u}= \mathbf{A}_{\tau^{(i^\dagger)}} \cdot \begin{bmatrix} \mathbf{v}_1   \\ \mathbf{v}_2 \end{bmatrix} - \mathbf{D} \cdot \bit (\mathbf{c}_M) ~  \in \ZZ_q^n.$$ | ||||
|   In addition, $\bdv$  picks extra small-norm matrices $\mathbf{R}_1,\ldots,\mathbf{R}_N \in \ZZ^{2m \times 2m}$ whose columns are sampled from $D_{\ZZ^m,\sigma}$, which | ||||
|   are used  to define randomizations of $\mathbf{D}_0$ by computing  $\mathbf{D}_k = \mathbf{D}_0 \cdot \mathbf{R}_k$ for each $k \in \{1,\ldots,N\}$. | ||||
|   The adversary is given public parameters $\mathsf{par}\coloneqq \{\mathbf{B},\mathbf{G}_0,\mathbf{G}_1,CK\}$, where $CK=\{\mathbf{D}_k\}_{k=0}^N$, and the public key $PK\coloneqq \big( \mathbf{A}, \{\mathbf{A}_j\}_{j=0}^\ell, \mathbf{D},\mathbf{u} \big)$. | ||||
|     \item If $coin=1$, the proof proceeds as in the proof of Lemma \ref{le:lwe-gs-type-II-attacks} with one difference in \textsf{Game} $3$. This difference is that \textsf{Game} $3$ is no longer statistically | ||||
|       indistinguishable from \textsf{Game} $2$: instead, we rely on an argument based on the R\'enyi divergence. | ||||
|       In \textsf{Game} $3$, $\bdv$ generates $PK$ exactly as in the proof of Lemma \ref{le:lwe-gs-type-II-attacks}. This implies that $\bdv$ takes a guess $i^\dagger \leftarrow U(\{1,\ldots,Q\})$ | ||||
|       with the hope that $\adv$ will choose to recycle the tag    $\tau^{(i^\dagger)}  $ of the $i^\dagger$-th signing query (i.e., $ \tau^\star =\tau^{(i^\dagger)} $). | ||||
|       As in the proof of Lemma \ref{le:lwe-gs-type-II-attacks}, $\bdv$  defines $\mathbf{D}=\bar{\mathbf{A}}_1 \in \ZZ_q^{n \times m}$ and $\mathbf{A}= \bar{\mathbf{A}}_1 \cdot \mathbf{S} $ for a small-norm | ||||
|       matrix $\mathbf{S} \in \ZZ^{m \times m}$ with Gaussian entries. It also  ``programs'' the matrices $\{ \mathbf{A}_j\}_{j=0}^\ell$ in such a way that | ||||
|       the trapdoor precisely vanishes at the $i^\dagger$-th signing query: in other words, | ||||
|       the sum $$\mathbf{A}_0 + \sum_{j=1}^\ell \tau^{(i)} [j] \mathbf{A}_j = \bar{\mathbf{A}}_1 \cdot (\mathbf{S}_0 + \sum_{j=1}^\ell \tau^{(i)} [j] \cdot \mathbf{S}_j) + (h_0 + \sum_{j=1}^\ell \tau^{(i)} [j] \cdot h_j ) \cdot \mathbf{C} $$ does not depend on the matrix $\mathbf{C} \in \ZZ_q^{n \times m}$ | ||||
|       (of which a trapdoor $\mathbf{T}_{\mathbf{C}} \in \ZZ^{m \times m}$ is known to $\bdv$) when $\tau^{(i)} = \tau^{(i^\dagger)}$, but it does for all other tags $\tau^{(i)} \neq \tau^{(i^\dagger)}$. In the setup phase, | ||||
|       $\bdv$ also sets up a random  matrix $\mathbf{D}_0 \in U(\ZZ_q^{2n \times 2m})$ which it obtains by choosing | ||||
|       $\mathbf{A}' \sample (\ZZ_q^{n \times 2m})$  to define | ||||
|       \begin{eqnarray} \label{def-D0} | ||||
|         \mathbf{D}_0=\begin{bmatrix} \bar{\mathbf{A}} \\ \hline \mathbf{A}' \end{bmatrix} \in \ZZ_q^{2n \times 2m}. | ||||
|       \end{eqnarray} | ||||
|       Then, it  computes $\mathbf{c}_M = \mathbf{D}_0 \cdot \mathbf{s}_0  \in \ZZ_q^{2n}$ for a short Gaussian vector | ||||
|       $\mathbf{s}_0 \sample D_{\ZZ^{2m},\sigma_0}$, which will be used in the $i^\dagger$-th query. | ||||
|       Next, it samples short vectors $\mathbf{v}_1,\mathbf{v}_2 \sample D_{\ZZ^m,\sigma}$ to define | ||||
|       $$\mathbf{u}= \mathbf{A}_{\tau^{(i^\dagger)}} \cdot \begin{bmatrix} \mathbf{v}_1   \\ \mathbf{v}_2 \end{bmatrix} - \mathbf{D} \cdot \bit (\mathbf{c}_M) ~  \in \ZZ_q^n.$$ | ||||
|       In addition, $\bdv$  picks extra small-norm matrices $\mathbf{R}_1,\ldots,\mathbf{R}_N \in \ZZ^{2m \times 2m}$ whose columns are sampled from $D_{\ZZ^m,\sigma}$, which | ||||
|       are used  to define randomizations of $\mathbf{D}_0$ by computing  $\mathbf{D}_k = \mathbf{D}_0 \cdot \mathbf{R}_k$ for each $k \in \{1,\ldots,N\}$. | ||||
|       The adversary is given public parameters $\mathsf{par}\coloneqq \{\mathbf{B},\mathbf{G}_0,\mathbf{G}_1,CK\}$, where $CK=\{\mathbf{D}_k\}_{k=0}^N$, and the public key $PK\coloneqq \big( \mathbf{A}, \{\mathbf{A}_j\}_{j=0}^\ell, \mathbf{D},\mathbf{u} \big)$. | ||||
|   \end{itemize} | ||||
|  | ||||
|   Using  $\mathbf{T}_{\mathbf{C}}$, | ||||
|   $\bdv$ can perfectly emulate the signing oracle  at all queries, except the $i^\dagger$-th query where the | ||||
| @@ -793,14 +772,14 @@ probabilities during hybrid games where the two distributions are not close in t | ||||
|   Due to the definition of $\mathbf{D}_0 \in \ZZ_q^{2n \times 2m}$ in (\ref{def-D0}), we finally note that | ||||
|   $\mathbf{w} \in \ZZ^{2m}$ is also a short  non-zero vector of $\Lambda_q^{\perp}(\bar{\mathbf{A}})$. | ||||
|  | ||||
|   \medskip	 | ||||
|  | ||||
|   \noindent $\bullet$ If $coin=2$, $\bdv$ faithfully generates $\mathsf{par}$ and $PK$, but it retains the extraction trapdoor $(\mathbf{E}_0,\mathbf{E}_1)$ associated with the dual Regev public keys | ||||
|   $(\mathbf{G}_0,\mathbf{G}_1)$. Note that $\adv$ can break the soundness of the proof system by either: (i) Generating ciphertexts | ||||
|   $\{\mathbf{c}_k\}_{k=1}^N$ and $\mathbf{c}_{s'}$ that do not encrypt an opening of $\mathbf{c}_{\mathfrak{m}}$ in the signature issuing protocol; (ii) Generating ciphertexts | ||||
|   $\{\mathbf{c}_k\}_{k=1}^N$, $\mathbf{c}_{\tau}$, $\mathbf{c}_{\mathbf{v}_1}$, $\mathbf{c}_{\mathbf{v}_2}$ and $\mathbf{c}_{s}$ that do not encrypt a valid signature in the $\mathsf{Prove}$ protocol. | ||||
|   In either case, the reduction $\bdv$ is able to detect the event by decrypting dual Regev ciphertext using $(\mathbf{E}_0,\mathbf{E}_1)$ and create a breach in the | ||||
|   soundness of the argument system. \medskip | ||||
|   \begin{itemize} | ||||
|     \item If $coin=2$, $\bdv$ faithfully generates $\mathsf{par}$ and $PK$, but it retains the extraction trapdoor $(\mathbf{E}_0,\mathbf{E}_1)$ associated with the dual Regev public keys | ||||
|       $(\mathbf{G}_0,\mathbf{G}_1)$. Note that $\adv$ can break the soundness of the proof system by either: (i) Generating ciphertexts | ||||
|       $\{\mathbf{c}_k\}_{k=1}^N$ and $\mathbf{c}_{s'}$ that do not encrypt an opening of $\mathbf{c}_{\mathfrak{m}}$ in the signature issuing protocol; (ii) Generating ciphertexts | ||||
|       $\{\mathbf{c}_k\}_{k=1}^N$, $\mathbf{c}_{\tau}$, $\mathbf{c}_{\mathbf{v}_1}$, $\mathbf{c}_{\mathbf{v}_2}$ and $\mathbf{c}_{s}$ that do not encrypt a valid signature in the $\mathsf{Prove}$ protocol. | ||||
|       In either case, the reduction $\bdv$ is able to detect the event by decrypting dual Regev ciphertext using $(\mathbf{E}_0,\mathbf{E}_1)$ and create a breach in the | ||||
|       soundness of the argument system. | ||||
|   \end{itemize} | ||||
|  | ||||
|   It it easy to see that, since $coin \in \{0,1,2 \}$ is chosen independently of $\adv$'s view, it turns out to be correct with probability $1/3$. As a consequence, if $\adv$'s  advantage | ||||
|   is non-negligible, so is $\bdv$'s. | ||||
| @@ -835,7 +814,7 @@ The scheme provides anonymity under the $\mathsf{LWE}_{n,q,\chi}$ assumption. | ||||
|   \end{description} | ||||
|   \medskip | ||||
|  | ||||
|   \noindent In \textsf{Game} $2$, we can notice that the adversary is interacting with a simulator that emulates the user in the $\mathsf{Prove}$ protocol \textit{without} using | ||||
|   In \textsf{Game} $2$, we can notice that the adversary is interacting with a simulator that emulates the user in the $\mathsf{Prove}$ protocol \textit{without} using | ||||
|   any message-signature pair. We thus conclude that, under the $\LWE_{n,q,\chi}$ assumption, $\adv$'s view cannot distinguish a real proof of signature possession from a simulated proof | ||||
|   produced without any witness. | ||||
| \end{proof} | ||||
| @@ -847,37 +826,37 @@ In this section, the signature scheme   of Section \ref{se:gs-lwe-sigep} is used | ||||
| In the notations hereunder, for any positive integers $\mathfrak{n}$, and $q \geq 2$, we define the ``powers-of-2'' matrix $\mathbf{H}_{\mathfrak{n} \times \mathfrak{n}\lceil\log q\rceil} \in \ZZ_q^{\mathfrak{n} \times  \mathfrak{n}\lceil\log q\rceil}$ to be: | ||||
| \begin{eqnarray*} | ||||
|  \mathbf{H}_{\mathfrak{n} \times \mathfrak{n} \lceil\log q\rceil }  &=& \mathbf{I}_{\mathfrak{n}}  \otimes  [1 \mid 2 \mid 4 \mid \ldots \mid 2^{\lceil\log q\rceil-1} ] . | ||||
|  %\\ &=& \begin{bmatrix} 1 ~2~4 ~ \ldots ~2^{\lceil\log q\rceil-1} &  & & & \\ | ||||
| %	  &   &  &  \ddots  &  \\ | ||||
| %			  &   &  &    & 1 ~2~4 ~ \ldots ~2^{\lceil\log q\rceil-1}  \\ | ||||
| %\end{bmatrix}. | ||||
| \end{eqnarray*} | ||||
| Also, for each vector $\mathbf{v} \in \ZZ_q^{\mathfrak{n}}$, we define $\bit(\mathbf{v}) \in \{0,1\}^{\mathfrak{n}\lceil\log q\rceil}$ to be the vector obtained by replacing each entry of $\mathbf{v}$ by its binary expansion. | ||||
| Hence, we have $\mathbf{v}=\mathbf{H}_{\mathfrak{n} \times \mathfrak{n}\lceil\log q\rceil} \cdot \bit(\mathbf{v})$ for any $\mathbf{v} \in \ZZ_q^{\mathfrak{n}}$. \\ | ||||
| \indent | ||||
| Hence, we have $\mathbf{v}=\mathbf{H}_{\mathfrak{n} \times \mathfrak{n}\lceil\log q\rceil} \cdot \bit(\mathbf{v})$ for any $\mathbf{v} \in \ZZ_q^{\mathfrak{n}}$. | ||||
|  | ||||
| In our scheme,  each   group membership certificate is a | ||||
| signature generated by the group manager on the user's public key.    Since the group manager only needs to sign known (rather than committed) messages, we can | ||||
| use a simplified version of the signature, where the chameleon hash function does not need to choose | ||||
|  the discrete Gaussian vector $\mathbf{s}$ with a larger standard deviation than other vectors. \\ | ||||
| \indent | ||||
|  the discrete Gaussian vector $\mathbf{s}$ with a larger standard deviation than other vectors. | ||||
|  | ||||
| A key component of the scheme is the two-message joining protocol whereby the group manager admits new group members by signing their public key. The first message is sent by | ||||
| the new user $\mathcal{U}_i$ who samples a membership secret consisting of a short vector $\mathbf{z}_i \sample D_{\ZZ^{4m},\sigma}$ (where $m= 2n \lceil\log q\rceil$), which is used to compute a | ||||
|  syndrome $\mathbf{v}_i = \mathbf{F}  \cdot \mathbf{z}_i \in \ZZ_q^{4n}$  for some public matrix $\mathbf{F} \in  \ZZ_q^{4n \times 4m} $. This syndrome $\mathbf{v}_i \in \ZZ_q^{4n}$  must be signed by  $\mathcal{U}_i$ using his long term secret key $\mathsf{usk}[i]$ (as in | ||||
| \cite{KY06,BSZ05}, we assume that each user has a long-term key $\mathsf{upk}[i]$ for a digital signature, which is registered in some PKI) and will uniquely | ||||
| identify $\mathcal{U}_i$. | ||||
|   In order to    generate  a membership certificate for    $\mathbf{v}_i \in \ZZ_q^{4n}$, the group manager $\mathsf{GM}$ signs its binary expansion | ||||
| 	$\mathsf{bin}(\mathbf{v}_i) \in \{0,1\}^{4n \lceil \log q \rceil }$ using the   scheme of Section \ref{se:gs-lwe-sigep}. \\ \indent  Equipped with his membership | ||||
| 	$\mathsf{bin}(\mathbf{v}_i) \in \{0,1\}^{4n \lceil \log q \rceil }$ using the   scheme of Section \ref{se:gs-lwe-sigep}. | ||||
|    | ||||
|   Equipped with his membership | ||||
| 	certificate   $(\tau,\mathbf{d},\mathbf{s}) \in \{0,1\}^\ell \times \ZZ^{2m} \times \ZZ^{2m}$, the new group member $\mathcal{U}_i$ can  sign a message using a Stern-like protocol for | ||||
| 	demonstrating his  knowledge of  | ||||
| 	 a valid  certificate for which he also knows the secret key associated with the certified public key $\mathbf{v}_i \in \ZZ_q^{4n}$. This boils down to | ||||
| 	providing evidence that the membership certificate is a valid signature on some binary message $\mathsf{bin}(\mathbf{v}_i) \in \{0,1\}^{4n \lceil \log q \rceil }$ | ||||
| 	for which he also knows a short  $\mathbf{z}_i \in \ZZ^{4m}$ | ||||
| 	 such that | ||||
|   $  \mathbf{v}_i = \mathbf{H}_{4n \times 2m} \cdot \bit(\mathbf{v}_i)    = \mathbf{F} \cdot \mathbf{z}_i \in \mathbb{Z}_q^{4n}$.  \\ | ||||
| 	\indent Interestingly, the process does not require any proof of knowledge of the membership secret $\mathbf{z}_i$ during the joining phase, which is round-optimal. Analogously to the Kiayias-Yung technique \cite{KY05} and constructions based on structure-preserving signatures | ||||
|   $  \mathbf{v}_i = \mathbf{H}_{4n \times 2m} \cdot \bit(\mathbf{v}_i)    = \mathbf{F} \cdot \mathbf{z}_i \in \mathbb{Z}_q^{4n}$. | ||||
|  | ||||
| 	Interestingly, the process does not require any proof of knowledge of the membership secret $\mathbf{z}_i$ during the joining phase, which is round-optimal. Analogously to the Kiayias-Yung technique \cite{KY05} and constructions based on structure-preserving signatures | ||||
| 		\cite{AFG+10}, the joining protocol thus remains secure in environments where many users want | ||||
| 		to register at the same time in concurrent sessions. \\ | ||||
|   \indent  We remark that a similar Stern-like protocol  could also be directly used to prove knowledge of a Boyen signature \cite{Boy10} on a binary expansion of the | ||||
| 		to register at the same time in concurrent sessions. | ||||
|  | ||||
|    We remark that a similar Stern-like protocol  could also be directly used to prove knowledge of a Boyen signature \cite{Boy10} on a binary expansion of the | ||||
|   user's syndrome	$\mathbf{v}_i \in \ZZ_q^{4n}$ while preserving the user's ability to prove knowledge of a short $\mathbf{z}_i \in \ZZ^{4m}$ such that $\mathbf{F}  \cdot \mathbf{z}_i = | ||||
|   \mathbf{v}_i \bmod q$. However, this would require considerably longer private keys containing $ 4n \cdot \log q$ matrices $\{\mathbf{A}_j\}_{j=0}^\ell$ of dimension $n \times | ||||
|   m$ each (i.e., we would need $\ell= \Theta(n \cdot \log q)$). In contrast, by using the signature scheme of Section \ref{se:gs-lwe-sigep}, we only need the group public key | ||||
| @@ -902,7 +881,6 @@ Then, do the following. \smallskip   \smallskip | ||||
| \item[1.] Generate a key pair for the signature   of Section \ref{desc-sig-protoc} for signing single-block messages. Namely, run $\TrapGen(1^n,1^m,q)$ to get~$\mathbf{A} \in | ||||
| \ZZ_q^{n \times m}$ and a short basis $\mathbf{T}_{\mathbf{A}}$ of | ||||
| $\Lambda_q^{\perp}(\mathbf{A})$, which  allows computing short vectors in $\Lambda_q^{\perp}(\mathbf{A})$ with  Gaussian parameter $\sigma$. | ||||
| %	$\sigma \geq \| \widetilde{\mathbf{T}_{\mathbf{A}}} \| \cdot \omega (\sqrt{\log m})$. | ||||
| Next, choose      matrices | ||||
| $\mathbf{A}_0,\mathbf{A}_1,\ldots,\mathbf{A}_{\ell},\mathbf{D} \sample (\ZZ_q^{n \times m})$, $ \mathbf{D}_0,\mathbf{D}_1 \sample (\ZZ_q^{2n \times 2m})$ and a vector $\mathbf{u} \sample (\ZZ_q^n)$. | ||||
| \item[2.] Choose an additional random matrix $\mathbf{F} \sample (\ZZ_q^{4n \times 4m})$ uniformly. Looking ahead, this matrix will be used to ensure security against framing attacks. | ||||
| @@ -977,7 +955,6 @@ $\bit(\mathbf{v}_i) \in \{0,1\}^{2m}$, where $\mathbf{v}_i=\mathbf{F} \cdot \mat | ||||
| $\scr_i=\mathbf{z}_i \in \mathbb{Z}^{4m}$ for the matrix $\mathbf{F}$. Namely, compute $ \mathbf{c}_{\mathbf{v}_i}  \in  \ZZ_q^m \times \ZZ_q^{2m}$ as | ||||
| \begin{eqnarray} \label{enc1} | ||||
| \mathbf{c}_{\mathbf{v}_i}=(\mathbf{c}_1,\mathbf{c}_2) &=&  \big( \mathbf{B}^T \cdot \mathbf{e}_0 + \mathbf{x}_1 ,~  \mathbf{G}_0^T \cdot \mathbf{e}_0 + \mathbf{x}_2 + \bit(\mathbf{v}_i) \cdot \lfloor q/2 \rfloor  \big) \qquad | ||||
| %\\ \nonumber && \hspace{4cm}\in \ZZ_q^m \times \ZZ_q^{2m} | ||||
| \end{eqnarray} | ||||
| for  randomly chosen $\mathbf{e}_0  \sample \chi^n$, $\mathbf{x}_1 \sample \chi^m, \mathbf{x}_2  \sample \chi^{2m}   $. | ||||
| Notice that, as in the construction of \cite{LNW15}, the columns of $\mathbf{G}_0$  can be interpreted as public keys for the multi-bit version | ||||
| @@ -1054,7 +1031,6 @@ The size of each group signature is largely dominated by that of the non-interac | ||||
|  | ||||
|  | ||||
| \smallskip | ||||
| \noindent | ||||
| \textsc{Correctness.} The correctness of algorithm \textsf{Verify}$(\mathcal{Y},M,\Sigma)$ follows from the facts that every certified group member is able to compute valid witness vectors satisfying equations~(\ref{enc1}), (\ref{rel-deux}) and (\ref{eq:rel-3}), and that the underlying argument system is perfectly complete. Moreover, the scheme parameters are chosen so that the GPV IBE~\cite{GPV08} is correct, which implies that algorithm \textsf{Open}$(\mathcal{Y},\mathcal{S}_{\OA},M,\Sigma)$ is also correct. | ||||
|  | ||||
|  | ||||
| @@ -1277,9 +1253,6 @@ The scheme is secure against misidentification attacks under the $\SIS_{n,2m,q,\ | ||||
|         before returning   $\crt_{i^\star}=(\mathsf{id}^\dagger,\mathbf{d}_{i^\star} =[ \mathbf{d}_{i^\star,1}^T  \mid \mathbf{d}_{i^\star,2}^T]^T,\mathbf{s}_{i^\star})$ | ||||
|         to $\adv$.  From the definition of $\mathbf{u} \in \Zq^n$ (\ref{def-u}), it is easy to see that $\crt_{i^\star}=(\mathsf{id}^\dagger,\mathbf{d}_{i^\star} ,\mathbf{s}_{i^\star})$ forms a valid membership certificate for | ||||
|         any membership secret $\mathbf{z}_{i^\star} \in \ZZ^{4m}$ corresponding to the syndrome $\mathbf{v}_{i^\star} = \mathbf{F} \cdot \mathbf{z}_{i^\star} \bmod q$. | ||||
| %Moreover, the distribution of | ||||
| %$\mathbf{s}_{i^\star}$ is | ||||
| % $D_{\ZZ^m,\sigma}^{\mathbf{c}_{v_{i^\star}}}$, where $\mathbf{c}_{v_{i^\star}} =  \mathbf{c}_M - \mathbf{D}_0 \cdot \bit( \mathbf{v}_{i^\star})  \in \Zq^n $, as in \GGame $2$. | ||||
|     \end{itemize} | ||||
|  | ||||
|     Regardless of the value of $coin$, queries to the random oracle~$H$ | ||||
| @@ -1664,9 +1637,7 @@ To do so, we first form the following vectors and matrices: | ||||
|   \scriptsize | ||||
| \begin{cases} | ||||
| \mathbf{x}_1 \hspace*{-1pt}= \hspace*{-1pt}\big(\mathbf{s}_0^T \| \mathbf{e}_{0,1}^T \| \mathbf{e}_{0,2}^T \| \mathbf{s}_{1}^T \| \mathbf{e}_{1,1}^T \| \mathbf{e}_{1,2}^T \| \ldots \| \mathbf{s}_{N}^T \| \mathbf{e}_{N,1}^T \| \mathbf{e}_{N,2}^T \big)^T\hspace*{-3.5pt} \in \hspace*{-1.5pt}[-B,B]^{(n+3m)(N+1)}; \\[2.5pt] | ||||
| %\mathbf{x}_2 = \big(\mathfrak{m}_1^T \| \ldots\| \mathfrak{m}_N^T\big)^T \in \mathsf{CorEnc}(mN); \hspace*{10pt} \mathbf{x}_3 = \mathbf{s}' \in [-(p-1), (p-1)]^{2m};\\[2.5pt] | ||||
| \mathbf{v} = \big(\mathbf{c}_{\mathfrak{m}}^T \| \mathbf{c}_{\mathbf{s}',1}^T\| \mathbf{c}_{\mathbf{s}',2}^T\| \mathbf{c}_{1,1}^T \|\mathbf{c}_{1,2}^T \| \ldots \|\mathbf{c}_{N,1}^T \|\mathbf{c}_{N,2}^T \big)^T \in \mathbb{Z}_q^{2n + 3m(N+1)};\\[5pt] | ||||
| %\mathbf{D} = [\mathbf{D}_1 | \ldots | \mathbf{D}_N]; \hspace*{5pt} | ||||
| \mathbf{P}_1 = \left( | ||||
|                          \begin{array}{ccc} | ||||
|                          \begin{array}{c} | ||||
| @@ -1752,8 +1723,6 @@ Now we employ the techniques from \cref{sse:stern-abstraction} to convert~\eqref | ||||
| \begin{cases} | ||||
| \mathsf{DecExt}_{(n+3m)(N+1),B}(\mathbf{x}_1) \rightarrow \hat{\mathbf{x}}_1 \in  \mathsf{B}^3_{(n+3m)(N+1)\delta_B}; \\[2.5pt] | ||||
| {\mathbf{M}}'_1 = \mathbf{M}_1 \cdot \widehat{\mathbf{K}}_{(n+3m)(N+1),B} \in \ZZ_q^{D \times 3(n+3m)(N+1)\delta_B}; \\[2.5pt] | ||||
| %\mathsf{Ext}_{2mN}(\mathbf{x}_2) \rightarrow \hat{\mathbf{x}}_2 \in \mathsf{B}_{2(2mN)}; \hspace*{5pt} | ||||
| %{\mathbf{M}}'_2 = \big[\mathbf{M}_2 | \mathbf{0}^{D \times 2mN}] \in \mathbb{Z}_q^{D \times 4mN}; \\[5pt] | ||||
| \mathsf{DecExt}_{2m, p-1}(\mathbf{s}') \rightarrow \hat{\mathbf{s}} \in \mathsf{B}^3_{2m\delta_{p-1}}; \hspace*{5pt} | ||||
| {\mathbf{M}}'_3 = \mathbf{M}_3 \cdot \widehat{\mathbf{K}}_{2m,p-1} \in \mathbb{Z}_q^{D \times 6m\delta_{p-1}}, | ||||
| \end{cases} | ||||
| @@ -1815,27 +1784,24 @@ We now describe how to derive the protocol for proving the possession of a signa | ||||
| \end{eqnarray} | ||||
| and that (modulo $q$) | ||||
| \begin{eqnarray}\label{equation:R-sign-ciphertext} | ||||
| \hspace*{-12.5pt} | ||||
| \begin{cases} | ||||
|   \forall k\in [N]: \mathbf{c}_{k,1}= \mathbf{B}^T\cdot\mathbf{s}_{k} + \mathbf{e}_{k,1} ; \hspace*{5pt}\mathbf{c}_{k,2}= \mathbf{G}_1^T\cdot \mathbf{s}_{k} + \mathbf{e}_{k,2} + \lfloor q/2 \rfloor\cdot \mathfrak{m}_k  ;  \\ | ||||
|   \forall k\in [N]: \mathbf{c}_{k,1}= \mathbf{B}^T\cdot\mathbf{s}_{k} + \mathbf{e}_{k,1} ; \mathbf{c}_{k,2}= \mathbf{G}_1^T\cdot \mathbf{s}_{k} + \mathbf{e}_{k,2} + \lfloor q/2 \rfloor\cdot \mathfrak{m}_k  ;  \\ | ||||
|  | ||||
|   \mathbf{c}_{\mathbf{v}, 1}= \mathbf{B}^T\cdot \mathbf{s}_{\mathbf{v}} + \mathbf{e}_{\mathbf{v},1}  ; \\ | ||||
|   \mathbf{c}_{\mathbf{v},2}= \mathbf{G}_1^T \hspace*{-2pt}\cdot\hspace*{-2pt} \mathbf{s}_{\mathbf{v}} \hspace*{-2pt}+\hspace*{-2pt} \mathbf{e}_{\mathbf{v},2}\hspace*{-2pt}+\hspace*{-2pt} \lfloor\frac{q}{p}\rfloor \hspace*{-2pt}\cdot\hspace*{-2pt} \mathbf{v} \hspace*{-2pt}=\hspace*{-2pt} \mathbf{G}_1^T \hspace*{-2pt}\cdot\hspace*{-2pt} \mathbf{s}_{\mathbf{v}} \hspace*{-2pt}+\hspace*{-2pt} \mathbf{e}_{\mathbf{v},2}\hspace*{-2pt}+\hspace*{-2pt} \left(\hspace*{-2pt} | ||||
|   \mathbf{c}_{\mathbf{v},2}= \mathbf{G}_1^T \cdot \mathbf{s}_{\mathbf{v}} +\mathbf{e}_{\mathbf{v},2}+ \lfloor\frac{q}{p}\rfloor \cdot \mathbf{v} = \mathbf{G}_1^T \cdot \mathbf{s}_{\mathbf{v}} + \mathbf{e}_{\mathbf{v},2} + \left( | ||||
|     \begin{array}{c} | ||||
|       \lfloor\frac{q}{p}\rfloor \mathbf{I}_m \\ | ||||
|       \mathbf{0}\\ | ||||
|     \end{array} | ||||
|   \hspace*{-2pt}\right)\cdot \mathbf{v}_1 | ||||
|   \hspace*{-2pt}+ \hspace*{-2pt} \left(\hspace*{-2pt} | ||||
|   \right)\cdot \mathbf{v}_1 | ||||
|   +  \left( | ||||
|     \begin{array}{c} | ||||
|       \mathbf{0}\\ | ||||
|       \lfloor\frac{q}{p}\rfloor \mathbf{I}_m \\ | ||||
|     \end{array} | ||||
|   \hspace*{-2pt}\right)\hspace*{-2pt}\cdot\hspace*{-2pt} \mathbf{v}_2 | ||||
|   \right)\cdot \mathbf{v}_2 | ||||
|   ; \\ | ||||
|  | ||||
| %\mathbf{c}_{\mathbf{v}_2, 1}= \mathbf{B}^T\cdot \mathbf{s}_{\mathbf{v}_2} + \mathbf{e}_{\mathbf{v}_2,1}  ; \hspace*{2.5pt} | ||||
| %\mathbf{c}_{\mathbf{v}_2,2}= \mathbf{G}_1^T \cdot \mathbf{s}_{\mathbf{v}_2} + \mathbf{e}_{\mathbf{v}_2,2}+ \lfloor\frac{q}{p}\rfloor \cdot %\mathbf{v}_2  ; \\ | ||||
|  | ||||
|   \mathbf{c}_{\mathbf{s}, 1}= \mathbf{B}^T\cdot \mathbf{s}_0 + \mathbf{e}_{0,1}  ; \hspace*{5pt}\mathbf{c}_{\mathbf{s},2}= \mathbf{G}_1^T\cdot \mathbf{s}_0 + \mathbf{e}_{0,2} + \lfloor q/p \rfloor\cdot \mathbf{s} ; \\ | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user